1. Determine the interval of convergence and radius of convergence of the power series, making sure to test endpoints.

 (a) \[\sum_{k=0}^{\infty} \left(\frac{x + 1}{8} \right)^k \]
 (b) \[\sum_{k=1}^{\infty} \frac{(2x + 3)^k}{6k} \]
 (c) \[\sum_{k=1}^{\infty} \frac{(-1)^k (x + 2)^k}{k \cdot 2^k} \]

2. Use the geometric series to find the power series representation (centered at 0) of

 \[h(x) = \frac{2}{3x + 1}. \]

 Give the interval of convergence of the new series.

3. Find the function represented by the series

 \[\sum_{k=0}^{\infty} (\sqrt{x} + 4)^k, \]

 and give the interval of convergence.

4. Let \(f(x) = \sin(3x) \).

 (a) Find the first four nonzero terms of the Maclaurin series for \(f \).
 (b) Write the power series using summation notation.
 (c) Determine the interval of convergence for the series.

5. Use a Taylor series to approximate the value of the definite integral

 \[\int_0^{0.2} \sin(x^2) \, dx \]

 with an absolute error less than \(10^{-10} \).

6. Consider the parametric equations

 \[x = \sqrt{t} + 4, \quad y = 3\sqrt{t}; \quad 0 \leq t \leq 16. \]

 Eliminate the parameter to obtain an equation in \(x \) and \(y \).

7. Express the Cartesian coordinates \((-1, \sqrt{3})\) in polar coordinates in three different ways.

8. Find the slope of the tangent line to the polar curve \(r = 8 \sin \theta \) at the point \((4, 5\pi/6)\).

9. Find all points where the polar curve \(r = 3 + 5 \sin \theta \) has a horizontal tangent line.
Alternating Series Estimation Theorem: If \(\sum (-1)^{k+1}b_k \) is a convergent alternating series such that \(0 \leq b_{k+1} \leq b_k \) for all \(k \), then \(R_n \leq b_{n+1} \) for all \(n \).

Maclaurin Series for Some Common Functions:

\[
\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \text{ for } |x| < 1 \text{ (Geometric Series)}
\]

\[
e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \text{ for } |x| < \infty
\]

\[
\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \text{ for } |x| < \infty
\]

\[
\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \text{ for } |x| < \infty
\]

\[
\ln(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \text{ for } -1 < x \leq 1
\]

\[
\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, \text{ for } |x| \leq 1
\]

Some Trigonometric Identities:

\[
\sin(2\theta) = 2 \sin \theta \cos \theta
\]

\[
\cos(2\theta) = \cos^2 \theta - \sin^2 \theta
\]