1. 10 pts. Let $I_{n}$ be the $n \times n$ identity matrix. Show that $A I_{n}=A$ for any $m \times n$ matrix $A$.
2. 10 pts . Find the inverse of

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
4 & -7 & 3 \\
-2 & 6 & -4
\end{array}\right]
$$

or show that $A$ is invertible.
3. 10 pts. The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T\left(x_{1}, x_{2}\right)=\left(6 x_{1}-8 x_{2},-5 x_{1}+7 x_{2}\right)$ is linear. Show that $T$ is invertible and find a formula for $T^{-1}$.
4. 10 pts. If $I$ is the $2 \times 2$ identity matrix and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, determine what conditions the entries of $A$ must satisfy (if any) to ensure that $\operatorname{det}(A+I)=\operatorname{det} A+\operatorname{det} I$.
5. 10 pts. Show that if $C$ is a square matrix such that $C^{\top} C=I$, then $|\operatorname{det} C|=1$.
6. 10 pts . Use Cramer's Rule to solve the system

$$
\left\{\begin{aligned}
-5 x_{1}+2 x_{2} & =9 \\
3 x_{1}-x_{2} & =-4
\end{aligned}\right.
$$

7. 10 pts . Let $\mathbb{R}^{m \times n}$ denote the set of all $m \times n$ matrices with real-valued entries. Given a matrix $C \in \mathbb{R}^{3 \times 2}$, let H be the set of all $X \in \mathbb{R}^{2 \times 4}$ such that $C X=O$ (the $3 \times 4$ zero matrix). Prove or disprove that H is a subspace of $\mathbb{R}^{2 \times 4}$.
8. 10 pts. The set of all continuous real-valued functions defined on a closed interval $[a, b]$ in $\mathbb{R}$ is denoted by $\mathcal{C}[a, b]$ and is a vector space. Show that the set

$$
\mathbf{H}=\{f \in \mathcal{C}[a, b]: f(a)=f(b)\}
$$

is a subspace of $\mathcal{C}[a, b]$
9. 10 pts. Let H and K be subspaces of vector space V . Define the sum of H and K to be the set

$$
\mathrm{H}+\mathrm{K}=\{\mathbf{u}+\mathbf{v}: \mathbf{u} \in \mathrm{H} \text { and } \mathbf{v} \in \mathrm{K}\} .
$$

Show that $\mathrm{H}+\mathrm{K}$ is a subspace of V .

