1. Let

$$
A=\left[\begin{array}{rrr}
4 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & -3
\end{array}\right]
$$

(a) 10 pts . Find the eigenvalues of A either directly or using the characteristic equation.
(b) 10 pts. Find a basis just for the eigenspace corresponding to the largest eigenvalue of A.
2. 10 pts. Show that if A^{2} equals the zero matrix, then A has only 0 for an eigenvalue.
3. 15 pts. Diagonalize the matrix

$$
A=\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]
$$

that is, find invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
4. 10 pts. Find the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$ with $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where

$$
A=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

5. 10 pts. Find a unit vector in the direction of the vector $\mathbf{v}=\left[\begin{array}{r}-6 \\ 4 \\ -3\end{array}\right]$.
6. 10 pts Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{r}
8 \\
-4 \\
-3
\end{array}\right] .
$$

Express \mathbf{x} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ using the fact that the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is orthogonal.
7. 10 pts . Prove that if U is an $m \times n$ matrix with orthonormal columns, then $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. (Hint: there's a theorem that says something about $U^{\top} U$.)
8. 10 pts. Find the best approximation to \mathbf{x} by vectors of the form $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}$, where

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
4 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{r}
2 \\
0 \\
-1 \\
-3
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
5 \\
-2 \\
4 \\
2
\end{array}\right] .
$$

9. 10 pts . Find an orthogonal basis for $\operatorname{Col} A$, where

$$
A=\left[\begin{array}{rrr}
3 & -8 & 3 \\
1 & -4 & -3 \\
-1 & 6 & 6 \\
1 & -2 & 6
\end{array}\right]
$$

10. 10 pts. Suppose \mathbb{P}_{3} has inner product given by

$$
\langle p, q\rangle=p(-3) q(-3)+p(-1) q(-1)+p(1) q(1)+p(3) q(3) .
$$

Define polynomials $p_{0}(t)=1, p_{1}(t)=t, p_{2}(t)=\frac{1}{4} t^{2}-\frac{5}{4}$. Determine the best approximation to $r(t)=t^{3}$ by polynomials in $\operatorname{Span}\left\{p_{0}, p_{1}, p_{2}\right\}$.
11. 10 pts . Recall $\mathcal{C}[a, b]$ denotes the vector space of real-valued functions that are continuous on the interval $[a, b]$. For $f, g \in \mathcal{C}[a, b]$ define

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t
$$

which is an inner product on $\mathcal{C}[a, b]$. Find an orthogonal basis for the subspace of $\mathcal{C}[-3,3]$ that is spanned by polynomials $3,2 t, t^{2}$.

