1. 10 pts. If I is the 2×2 identity matrix and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, determine what conditions the entries of A must satisfy (if any) to ensure that $\operatorname{det}(A+I)=\operatorname{det} A+\operatorname{det} I$.
2. 10 pts. Use Cramer's Rule to solve the system

$$
\left\{\begin{aligned}
x_{1}+x_{2} & =3 \\
-3 x_{1}+2 x_{3} & =0 \\
x_{2}-2 x_{3} & =2
\end{aligned}\right.
$$

3. 10 pts. Let W be the set of all vectors of the form

$$
\left[\begin{array}{c}
s+3 t \\
s-t \\
2 s+6 t
\end{array}\right]
$$

Prove or disprove that W is a subspace of \mathbb{R}^{3}.
4. 10 pts . The set of all continuous real-valued functions defined on a closed interval $[a, b]$ in \mathbb{R} is denoted by $\mathcal{C}[a, b]$ and is a vector space. Show that the set $\{f \in \mathcal{C}[a, b]: f(a)=f(b)\}$ is a subspace of $\mathcal{C}[a, b]$.
5. 10 pts . Let H and K be subspaces of vector space V. Define the sum of H and K to be the set

$$
H+K=\{\mathbf{u}+\mathbf{v}: \mathbf{u} \in H \text { and } \mathbf{v} \in K\} .
$$

Show that $H+K$ is a subspace of V.
6. 10 pts . Find a basis for the null space of the matrix

$$
\left[\begin{array}{rrrrr}
1 & 0 & -5 & 1 & 4 \\
-2 & 1 & 6 & -2 & -2 \\
0 & 2 & -8 & 1 & 9
\end{array}\right] .
$$

7. 10 pts. Find a basis for the space spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
6 \\
-1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
5 \\
-3 \\
3 \\
-4
\end{array}\right], \quad \mathbf{v}_{5}=\left[\begin{array}{r}
0 \\
3 \\
-1 \\
1
\end{array}\right] .
$$

8. 15 pts . Show that

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
1 \\
-2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
$$

is a basis for \mathbb{R}^{2}, then find the change-of-coordinates matrix from \mathcal{B} to the standard basis for \mathbb{R}^{2}.
9. 10 pts . The set of polynomials $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}. Find the coordinate vector of $\mathbf{p}(t)=3+t-6 t^{2}$ relative to \mathcal{B}.
10. 10 pts. Show that the space $\mathcal{C}(\mathbb{R})$ of all continuous functions defined on the real line is an infinitedimensional space.
11. 15 pts . The matrices

$$
A=\left[\begin{array}{rrrrrr}
1 & 1 & -3 & 7 & 9 & -9 \\
1 & 2 & -4 & 10 & 13 & -12 \\
1 & -1 & -1 & 1 & 1 & -3 \\
1 & -3 & 1 & -5 & -7 & 3 \\
1 & -2 & 0 & 0 & -5 & -4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrrrrr}
1 & 1 & -3 & 7 & 9 & -9 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are row equivalent. What is rank A and $\operatorname{dim} \operatorname{Nul} A$? Also find bases for $\operatorname{Col} A, \operatorname{Row} A$, and $\operatorname{Nul} A$.
12. 15 pts. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for \mathbb{R}^{2}, where

$$
\mathbf{b}_{1}=\left[\begin{array}{r}
-1 \\
8
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
1 \\
-5
\end{array}\right], \quad \mathbf{c}_{1}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad \mathbf{c}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}, and also the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.
13. 10 pts. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+2 t\right\}$ to the standard basis $\mathcal{C}=\left\{1, t, t^{2}\right\}$.

