Math 260 Summer 2021 Exam 2

NAME:

- 1. 10 pts. If I is the 2 × 2 identity matrix and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, determine what conditions the entries of A must satisfy (if any) to ensure that $\det(A + I) = \det A + \det I$.
- 2. 10 pts. Use Cramer's Rule to solve the system

$$\begin{cases} x_1 + x_2 &= 3\\ -3x_1 &+ 2x_3 &= 0\\ x_2 - 2x_3 &= 2 \end{cases}$$

3. 10 pts. Let W be the set of all vectors of the form

$$\begin{bmatrix} s+3t\\ s-t\\ 2s+6t \end{bmatrix}.$$

Prove or disprove that W is a subspace of \mathbb{R}^3 .

- 4. 10 pts. The set of all continuous real-valued functions defined on a closed interval [a, b] in \mathbb{R} is denoted by $\mathcal{C}[a, b]$ and is a vector space. Show that the set $\{f \in \mathcal{C}[a, b] : f(a) = f(b)\}$ is a subspace of $\mathcal{C}[a, b]$.
- 5. 10 pts. Let H and K be subspaces of vector space V. Define the sum of H and K to be the set

$$H + K = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in H \text{ and } \mathbf{v} \in K\}.$$

Show that H + K is a subspace of V.

6. 10 pts. Find a basis for the null space of the matrix

$$\begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ -2 & 1 & 6 & -2 & -2 \\ 0 & 2 & -8 & 1 & 9 \end{bmatrix}.$$

7. 10 pts. Find a basis for the space spanned by the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -2\\1\\-1\\1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 6\\-1\\2\\-1 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 5\\-3\\3\\-4 \end{bmatrix}, \quad \mathbf{v}_{5} = \begin{bmatrix} 0\\3\\-1\\1 \end{bmatrix}.$$

8. 15 pts. Show that

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}^2 , then find the change-of-coordinates matrix from \mathcal{B} to the standard basis for \mathbb{R}^2 .

- 9. 10 pts. The set of polynomials $\mathcal{B} = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$ relative to \mathcal{B} .
- 10. 10 pts. Show that the space $\mathcal{C}(\mathbb{R})$ of all continuous functions defined on the real line is an infinitedimensional space.
- 11. 15 pts. The matrices

are row equivalent. What is rank A and dim Nul A? Also find bases for Col A, Row A, and Nul A.

12. If pts. Let
$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ be bases for \mathbb{R}^2 , where

$$\mathbf{b}_1 = \begin{bmatrix} -1\\ 8 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1\\ -5 \end{bmatrix}, \quad \mathbf{c}_1 = \begin{bmatrix} 1\\ 4 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 1\\ 1 \end{bmatrix}.$$

Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} , and also the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

13. 10 pts. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$ to the standard basis $\mathcal{C} = \{1, t, t^2\}$.