1. 10 pts. Determine the values of g and h such that the system

$$
\left\{\begin{aligned}
x_{1}+3 x_{2} & =g \\
4 x_{1}+h x_{2} & =8
\end{aligned}\right.
$$

has (a) no solution; (b) a unique solution; and (c) many solutions.
2. 10 pts . Find the general solution to the system having augmented matrix

$$
\left[\begin{array}{rrrr}
1 & 4 & 0 & 7 \\
2 & 7 & 0 & 10
\end{array}\right]
$$

3. 10 pts . Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} :

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
-5 \\
11 \\
-7
\end{array}\right] .
$$

4. 10 pts . Write the augmented matrix for the linear system that corresponds to the matrix equation $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]
$$

then solve the system and write the solution as a vector.
5. 10 pts Given

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
-3 \\
8
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
4 \\
-1 \\
-5
\end{array}\right]
$$

prove or disprove that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans \mathbb{R}^{3}.
6. 10 pts . When solutions of sodium phosphate and barium nitrate are mixed, the result is barium phosphate and sodium nitrate. The unbalanced equation is

$$
\mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3}
$$

Use the vector equation approach to balance the equation.
7. 10 pts . Find the values of h for which the vectors are linearly dependent:

$$
\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right], \quad\left[\begin{array}{r}
-5 \\
7 \\
8
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
h
\end{array}\right] .
$$

8. 10 pts. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{r}-2 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{x} into $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}$. Find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for each \mathbf{x}.
9. 10 pts. An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, with $A \in \mathbb{R}^{m \times n}$ (i.e. A is an $m \times n$ matrix) and $\mathbf{b} \in \mathbb{R}^{m}$. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$.
10. 10 pts. each Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(\mathbf{e}_{1}\right)=(1,3), T\left(\mathbf{e}_{2}\right)=(4,-7)$, and $T\left(\mathbf{e}_{3}\right)=(-5,4)$.
(a) Prove or disprove that T one-to-one.
(b) Prove or disprove that T onto.
11. 10 pts . Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\mathbf{x})=B \mathbf{x}$ for some $m \times n$ matrix B. Show that if A is the standard matrix for T, then $A=B$.
12. 10 pts . Let

$$
A=\left[\begin{array}{rr}
2 & 5 \\
-3 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
4 & -5 \\
3 & k
\end{array}\right] .
$$

Find the values of k, if any, for which $A B=B A$.
13. 10 pts . Find the inverse of the matrix

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

14. 10 pts. If $n \times n$ matrices E and F are such that $E F=I$, show that E and F commute.

Theorem 1: Suppose equation $A \mathbf{x}=\mathbf{b}$ is consistent for some vector \mathbf{b}, and let \mathbf{p} be a particular solution. If S and S_{h} are the solution sets for $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{0}$, respectively, then $S=\left\{\mathbf{p}+\mathbf{v}_{h}: \mathbf{v}_{h} \in S_{h}\right\}$.

Theorem 2: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then:
a) T is onto if and only if the columns of A span \mathbb{R}^{m}.
b) T is one-to-one if and only if the columns of A are linearly independent.

