Math 260 Summer 2021 Exam 1

NAME:

1. 10 pts. Determine the values of g and h such that the system

$$\begin{cases} x_1 + 3x_2 = g\\ 4x_1 + hx_2 = 8 \end{cases}$$

has (a) no solution; (b) a unique solution; and (c) many solutions.

2. 10 pts. Find the general solution to the system having augmented matrix

[1	4	0	7]
$\lfloor 2$	7	0	10

3. 10 pts. Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0\\5\\5 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 2\\0\\8 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -5\\11\\-7 \end{bmatrix}.$$

4. 10 pts. Write the augmented matrix for the linear system that corresponds to the matrix equation Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix},$$

then solve the system and write the solution as a vector.

5. 10 pts. Given

$$\mathbf{v}_1 = \begin{bmatrix} 0\\0\\-2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\-3\\8 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4\\-1\\-5 \end{bmatrix},$$

prove or disprove that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ spans \mathbb{R}^3 .

6. 10 pts. When solutions of sodium phosphate and barium nitrate are mixed, the result is barium phosphate and sodium nitrate. The unbalanced equation is

$$Na_3PO_4 + Ba(NO_3)_2 \longrightarrow Ba_3(PO_4)_2 + NaNO_3$$

Use the vector equation approach to balance the equation.

7. 10 pts. Find the values of h for which the vectors are linearly dependent:

$$\begin{bmatrix} 1\\-1\\3 \end{bmatrix}, \begin{bmatrix} -5\\7\\8 \end{bmatrix}, \begin{bmatrix} 1\\1\\h \end{bmatrix}.$$

- 8. 10 pts. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{x} into $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$. Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} .
- 9. 10 pts. An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, with $A \in \mathbb{R}^{m \times n}$ (i.e. A is an $m \times n$ matrix) and $\mathbf{b} \in \mathbb{R}^m$. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$.
- 10. 10 pts. each Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $T(\mathbf{e}_1) = (1,3), T(\mathbf{e}_2) = (4,-7),$ and $T(\mathbf{e}_3) = (-5,4).$
 - (a) Prove or disprove that T one-to-one.
 - (b) Prove or disprove that T onto.
- 11. 10 pts. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\mathbf{x}) = B\mathbf{x}$ for some $m \times n$ matrix B. Show that if A is the standard matrix for T, then A = B.
- 12. 10 pts. Let

$$A = \begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & -5 \\ 3 & k \end{bmatrix}.$$

Find the values of k, if any, for which AB = BA.

13. 10 pts. Find the inverse of the matrix

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

14. 10 pts. If $n \times n$ matrices E and F are such that EF = I, show that E and F commute.

Theorem 1: Suppose equation $A\mathbf{x} = \mathbf{b}$ is consistent for some vector \mathbf{b} , and let \mathbf{p} be a particular solution. If S and S_h are the solution sets for $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$, respectively, then $S = {\mathbf{p} + \mathbf{v}_h : \mathbf{v}_h \in S_h}$.

Theorem 2: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- a) T is onto if and only if the columns of A span \mathbb{R}^m .
- b) T is one-to-one if and only if the columns of A are linearly independent.