1. 10 pts. For the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
1 & -3 & 0 \\
4 & -13 & 1
\end{array}\right]
$$

find a basis for the eigenspace corresponding to the eigenvalue $\lambda=-2$.
2. 10 pts. Suppose \mathbf{B} is an $m \times m$ matrix whose entries along each row add up to the same value μ. Show that μ is an eigenvalue of \mathbf{B}.
3. 10 pts . Find the characteristic equation of

$$
\mathbf{A}=\left[\begin{array}{rrr}
-2 & 0 & 3 \\
5 & -2 & 8 \\
1 & -4 & 6
\end{array}\right]
$$

4. 10 pts . Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=\mathbf{A x}$, where

$$
\mathbf{A}=\left[\begin{array}{rr}
5 & -3 \\
-7 & 1
\end{array}\right]
$$

Find a basis \mathcal{B} for \mathbb{R}^{2} such that $[T]_{\mathcal{B}}$ is diagonal.
5. 10 pts. Find the distance from \mathbf{x} to the line through \mathbf{u} and the origin, where

$$
\mathbf{x}=\left[\begin{array}{l}
-1 \\
-6
\end{array}\right] \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{r}
-8 \\
3
\end{array}\right]
$$

6. 10 pts. For $\mathbf{u} \in \mathbb{R}^{n}$ such that $\mathbf{u} \neq \mathbf{0}$, define $\ell=\operatorname{Span}\{\mathbf{u}\}$. Show that the mapping $\mathbf{x} \mapsto 2\left(\operatorname{proj}_{\ell} \mathbf{x}\right)-\mathbf{x}$ is a linear transformation.
7. 10 pts. Given

$$
\mathbf{x}=\left[\begin{array}{r}
-3 \\
8 \\
2 \\
-4
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Express \mathbf{x} as a sum $\mathbf{v}+\mathbf{w}$, where $\mathbf{v} \in W$ and $\mathbf{w} \in W^{\perp}$.
8. 10 pts. Find an orthogonal basis for $\operatorname{Col} \mathbf{A}$, where

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -8 & 3 \\
1 & -4 & -3 \\
-1 & 6 & 6 \\
1 & -2 & 6
\end{array}\right]
$$

9. 10 pts . Suppose \mathbb{P}_{3} has inner product given by

$$
\langle p, q\rangle=p(-3) q(-3)+p(-1) q(-1)+p(1) q(1)+p(3) q(3) .
$$

Define polynomials $p_{0}(t)=1, p_{1}(t)=t, p_{2}(t)=\frac{1}{4} t^{2}-\frac{5}{4}$. Determine the best approximation to $r(t)=t^{3}$ by polynomials in $\operatorname{Span}\left\{p_{0}, p_{1}, p_{2}\right\}$.
10. 10 pts. Let V be a vector space. Suppose $T: V \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation. Prove that $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=T\left(\mathbf{v}_{1}\right) \cdot T\left(\mathbf{v}_{2}\right)$ is an inner product on V.
11. 10 pts. Recall $\mathcal{C}[a, b]$ denotes the vector space of real-valued functions that are continuous on the interval $[a, b]$. For $f, g \in \mathcal{C}[a, b]$ define

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t
$$

which is an inner product on $\mathcal{C}[a, b]$. Find an orthogonal basis for the subspace of $\mathcal{C}[-3,3]$ that is spanned by polynomials $3,2 t, t^{2}$.

