1. 10 pts . Given that

$$
\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=-9
$$

evaluate the determinant

$$
\left|\begin{array}{rrr}
-3 g & -3 h & -3 i \\
d+4 g & e+4 h & f+4 i \\
-2 a & -2 b & -2 c
\end{array}\right| .
$$

2. 10 pts. Suppose \mathbf{A} is a square matrix such that $\operatorname{det}\left(\mathbf{A}^{7}\right)=0$. Explain why \mathbf{A} cannot be invertible.
3. 10 pts. Use Cramer's Rule to solve the system
4. 10 pts . Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,3,0),(-2,0,2)$, and $(-1,3,-1)$.
5. 10 pts. Let W be the set of all vectors of the form

$$
\left[\begin{array}{c}
s+3 t \\
s-t \\
2 s-7 t \\
4 t
\end{array}\right]
$$

Prove or disprove that W is a subspace of \mathbb{R}^{4}.
6. 10 pts. The set of all continuous real-valued functions defined on a closed interval $[a, b]$ in \mathbb{R} is denoted by $\mathcal{C}[a, b]$ and is a vector space. Show that the set $\{f \in \mathcal{C}[a, b]: f(a)=f(b)\}$ is a subspace of $\mathcal{C}[a, b]$. The symbol \in means "is an element of," as usual.
7. 10 pts . Prove or disprove that the set

$$
W=\left\{\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]: 6 r-2=s-9 t\right\}
$$

is a vector space.
8. 10 pts . Find a basis for the null space of the matrix

$$
\left[\begin{array}{rrrrr}
1 & 0 & -5 & 1 & 4 \\
-2 & 1 & 6 & -2 & -2 \\
0 & 2 & -8 & 1 & 9
\end{array}\right] .
$$

9. 10 pts . Find a basis for the space spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
6 \\
-1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
5 \\
-3 \\
3 \\
-4
\end{array}\right], \quad \mathbf{v}_{5}=\left[\begin{array}{r}
0 \\
3 \\
-1 \\
1
\end{array}\right] .
$$

10. 10 pts . Find the change-of-coordinates matrix from the basis

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{r}
2 \\
0 \\
-5
\end{array}\right],\left[\begin{array}{r}
8 \\
-2 \\
7
\end{array}\right]\right\}
$$

to the standard basis for \mathbb{R}^{3}.
11. 10 pts. The set of polynomials $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}. Find the coordinate vector of $\mathbf{p}(t)=3+t-6 t^{2}$ relative to \mathcal{B}.
12. 10 pts. Determine the dimensions of $\operatorname{Nul} \mathbf{A}$ and $\operatorname{Col} \mathbf{A}$ for the matrix

$$
\mathbf{A}=\left[\begin{array}{rrrrrr}
1 & 3 & -4 & 2 & -1 & 6 \\
0 & 0 & 1 & -3 & 7 & 0 \\
0 & 0 & 0 & 1 & 4 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

13. 10 pts. Show that the space $\mathcal{C}(\mathbb{R})$ of all continuous functions defined on the real line is an infinitedimensional space.
14. 10 pts. In statistical theory, a common requirement is that a matrix be of full rank. That is, the rank should be as large as possible. Explain why an $m \times n$ matrix with more rows than columns has full rank if and only if its columns are linearly independent.
15. 10 pts. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for \mathbb{R}^{2}, where

$$
\mathbf{b}_{1}=\left[\begin{array}{r}
-1 \\
8
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
1 \\
-5
\end{array}\right], \quad \mathbf{c}_{1}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad \mathbf{c}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}, and the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.

