1. 5 pts. Determine the values of h such that the matrix

$$
\left[\begin{array}{rrr}
2 & -3 & h \\
-6 & 9 & 5
\end{array}\right]
$$

is the augmented matrix of a consistent linear system.
2. 10 pts . Find the general solution to the system having augmented matrix

$$
\left[\begin{array}{llll}
0 & -2 & -1 & 3 \\
3 & -6 & -2 & 2
\end{array}\right]
$$

3. 10 pts . Determine if \mathbf{b} is a linear combination of the column vectors of the matrix \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & -2 & -6 \\
0 & 3 & 7 \\
1 & -2 & 5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
11 \\
-5 \\
9
\end{array}\right]
$$

4. 10 pts. For what values of h is the vector \mathbf{y} in the plane generated by \mathbf{v}_{1} and \mathbf{v}_{2}, given that

$$
\mathbf{y}=\left[\begin{array}{r}
h \\
-5 \\
-3
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
1 \\
8
\end{array}\right] ?
$$

5. 10 pts . Write the augmented matrix for the linear system that corresponds to the matrix equation $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
-3 & -1 & 2 \\
0 & 5 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],
$$

then solve the system and write the solution as a vector.
6. 10 pts. Suppose $\mathbf{A x}=\mathbf{b}$ has a solution. Show that the solution is unique if and only if $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.
7. 10 pts. When solutions of sodium phosphate and barium nitrate are mixed, the result is barium phosphate and sodium nitrate. The unbalanced equation is

$$
\mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3} .
$$

Use the vector equation approach to balance the equation.
8. 10 pts. Prove or disprove the following statement: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ are in \mathbb{R}^{4} and \mathbf{v}_{3} is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}$, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.
9. 10 pts. Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=\left(4 x_{1}-2 x_{2}, 3\left|x_{2}\right|\right)$ is not linear.
10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2},-x_{1}+3 x_{2}, 3 x_{1}-2 x_{2}\right) .
$$

(a) 10 pts. Find $\mathbf{x} \in \mathbb{R}^{2}$ such that $T(\mathbf{x})=(-1,4,9)$.
(b) 10 pts. Prove or disprove that the transformation T one-to-one.
(c) 10 pts . Prove or disprove that the transformation T onto.
11. 10 pts . Let

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & -4 \\
-1 & 8
\end{array}\right] .
$$

Either construct a 2×2 matrix \mathbf{B} having two different nonzero columns such that $\mathbf{A B}$ is the zero matrix, or show such a matrix \mathbf{B} cannot exist.
12. 10 pts. Suppose $(\mathbf{B}-\mathbf{C}) \mathbf{D}=\mathbf{O}$, where \mathbf{B} and \mathbf{C} are $m \times n$ matrices and \mathbf{D} is invertible. Show that $\mathbf{B}=\mathbf{C}$.
13. 15 pts. Show that the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(x_{1}, x_{2}\right)=\left(6 x_{1}-8 x_{2},-5 x_{1}+7 x_{2}\right)
$$

is invertible, and find a formula for T^{-1}.
14. 10 pts. Prove or disprove that the vectors

$$
\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right], \quad\left[\begin{array}{r}
-5 \\
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{r}
7 \\
0 \\
-5
\end{array}\right]
$$

form a basis for \mathbb{R}^{3}.
15. 10 pts . Let

$$
\mathbf{b}_{1}=\left[\begin{array}{r}
-3 \\
1 \\
-4
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
7 \\
5 \\
-6
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{r}
11 \\
0 \\
7
\end{array}\right] .
$$

The vector \mathbf{x} is in a subspace H with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find the \mathcal{B}-coordinates of \mathbf{x}.
16. 10 pts. What is the rank of a 4×6 matrix whose null space is two dimensional? Justify your answer.

