Math 260 Summer 2017 Exam 1

NAME:

Vector Space Axioms:

VS1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any $\mathbf{u}, \mathbf{v} \in V$ VS2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ VS3. There exists some $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for any $\mathbf{u} \in V$ VS4. For each $\mathbf{u} \in V$ there exists some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ VS5. For any $a \in \mathbb{F}$ and $\mathbf{u}, \mathbf{v} \in V$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ VS6. For any $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$, $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ VS7. For any $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$, $a(b\mathbf{u}) = (ab)\mathbf{u}$ VS8. For all $\mathbf{u} \in V$, $1\mathbf{u} = \mathbf{u}$

- 1. [5 pts. each] Let $\mathbf{u} = [-3, 9, 2]$ and $\mathbf{v} = [-2, -1, 0]$.
 - (a) Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
 - (b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
 - (c) Find the angle between \mathbf{u} and \mathbf{v} in exact terms.
- 2. 10 pts. Using properties of the dot product (a.k.a. scalar product), for vectors \mathbf{u} and \mathbf{v} rewrite the expression

$$\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2$$

in the form $c \mathbf{u} \cdot \mathbf{v}$ for some appropriate constant c.

- 3. 10 pts. Determine the coordinates of the point lying one-fifth of the way from p = (1, 3, -1) to q = (-4, 2, 6) along the line segment \overline{pq} .
- 4. 10 pts. Find an equation of the plane in \mathbb{R}^3 that is perpendicular to $\mathbf{n} = [-3, 2, 8]$ and contains the point p = (1/2, 0, 2).
- 5. 10 pts. Find a parametric equation $\mathbf{x}(t)$ for the line of intersection of the two planes x y + z = 2and 2x - 3y + z = 1.
- 6. 10 pts. Find **ABC** for

$$\mathbf{A} = \begin{bmatrix} 2 & a & 1 \\ 3 & -1 & 2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & -3 \\ a & -1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Γ.

- **-**

7. 10 pts. Suppose that $\mathbf{A}^2 + 2\mathbf{A} + \mathbf{I} = \mathbf{O}$. Show that \mathbf{A} is invertible.

8. 10 pts. Find the inverse for the matrix using elementary row operations, if the inverse exists:

$$\mathbf{C} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

9. 10 pts. Solve the system using Gaussian elimination:

$$\begin{cases} x + 2y - z = 9\\ 2x - z = -2\\ 3x + 5y + 2z = 22 \end{cases}$$

10. 10 pts. Find the complete solution set of the system:

$$\begin{cases} 3x - y + 6z = 4\\ x + y - 2z = 0 \end{cases}$$

11. 10 pts. Prove or disprove that the set

$$S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x^2 + y^2 \le 9 \right\}$$

is a vector space under the usual vector operations for \mathbb{R}^2 .

12. 10 pts. The sets $U = \{[x, y] : 4y - 3x = 0\}$ and $V = \{[x, y] : y + 8x = 0\}$ are vector subspaces of \mathbb{R}^2 . Show that $U \cup V$ is not a vector subspace.

13. 10 pts. Prove that if U_1 and U_2 are subspaces of a vector space V, then $U_1 + U_2$ is a subspace of V.

14. 10 pts. Prove or disprove that the vectors [1, 2], [1, 3] are linearly independent vectors in \mathbb{R}^2 .