Vector Space Axioms:

VS1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 for any $\mathbf{u}, \mathbf{v} \in V$

VS2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$
 for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

VS3. There exists some
$$\mathbf{0} \in V$$
 such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for any $\mathbf{u} \in V$

VS4. For each
$$\mathbf{u} \in V$$
 there exists some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

VS5. For any
$$a \in \mathbb{F}$$
 and $\mathbf{u}, \mathbf{v} \in V$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$

VS6. For any
$$a, b \in \mathbb{F}$$
 and $\mathbf{u} \in V$, $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

VS7. For any
$$a, b \in \mathbb{F}$$
 and $\mathbf{u} \in V$, $a(b\mathbf{u}) = (ab)\mathbf{u}$

VS8. For all
$$\mathbf{u} \in V$$
, $1\mathbf{u} = \mathbf{u}$

1.
$$5 \text{ pts. each}$$
 Let $\mathbf{u} = [2, -1, 4]$ and $\mathbf{v} = [-3, 1, 2]$.

- (a) Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
- (b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
- (c) Find the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree.
- 2. 10 pts. Find a parametrization $\mathbf{x}(t)$ of the line containing the points p = (2, -6, 9) and q = (0, 8, 1), such that $\mathbf{x}(0) = \mathbf{p}$ and $\mathbf{x}(1) = \mathbf{q}$.
- 3. 10 pts. Find an equation of the plane in \mathbb{R}^3 containing the points (0,1,2), (2,3,4), and (4,5,6).
- 4. 10 pts. Find a parametric equation $\mathbf{x}(t)$ for the line of intersection of the two planes x y + z = 3 and 2x 3y z = 1.
- 5. 10 pts. Find **BA** for $\mathbf{A} = \begin{bmatrix} 2 & -3 & 0 \\ -1 & 4 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} -7 & 5 \\ 0 & 1 \\ 3 & -9 \end{bmatrix}.$
- 6. Let **I** denote the 2×2 identity matrix, and **O** the 2×2 zero matrix.
 - (a) $\boxed{5 \text{ pts.}}$ Find a 2 × 2 matrix **A** such that $\mathbf{A}^2 = -\mathbf{I}$.
 - (b) 10 pts. Determine all 2×2 matrices **A** such that $\mathbf{A}^2 = \mathbf{O}$.
- 7. 15 pts. Using elementary row operations, find a row-equivalent matrix for

$$\begin{bmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{bmatrix}$$

that is in row echelon form.

8. 15 pts. Find the inverse for the matrix using elementary row operations, if the inverse exists:

$$\mathbf{C} = \begin{bmatrix} 0 & 3 & 0 \\ 0 & 2 & 1 \\ 2 & 4 & 3 \end{bmatrix}$$

9. 15 pts. Solve the system using Gaussian elimination:

$$\begin{cases} x + 2y - z = 9 \\ 2x - z = -2 \\ 3x + 5y + 2z = 22 \end{cases}$$

10. 15 pts. Find the complete solution set of the system:

$$\begin{cases} 3x - 5y + 6z = 4\\ x + y - 2z = -1 \end{cases}$$

11. 10 pts. Show that the set

$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x - 2y + z^2 = 0 \right\}$$

is not a vector space under the usual vector operations for \mathbb{R}^3 .

12. 10 pts. Show that the set $S = \{[x, y] : 4y - 3x = 0\}$ is a vector subspace of \mathbb{R}^2 .

13. $\boxed{\text{10 pts.}}$ Prove that if U and W are subspaces of a vector space V, then $U \cap W$ is a subspace of V.

14. 10 pts. Let U be a subspace of \mathbb{R}^n . Prove that

$$U^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{u} = 0 \text{ for all } \mathbf{u} \in U \}.$$

is also a subspace of \mathbb{R}^n .

15. $\boxed{10 \text{ pts.}}$ Prove or disprove that the vectors [1, 2, 6], [1, 5, -1], and [0, 3, 1] are linearly independent.