Math 260 Summer 2015 Exam 3

NAME:

1. 10 pts. Evaluate the determinant

2. 15 pts. Solve the system Ax = b using Cramer's Rule, if possible, where

$\mathbf{A} =$	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	$\begin{array}{c} 1\\ 0\\ 3\end{array}$	2 4 1	and	$\mathbf{b} =$	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	
	0	3	Ţ			$\begin{bmatrix} 3 \end{bmatrix}$	

3. 10 pts. each The matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

is diagonalizable.

- (a) Find the characteristic polynomial of **A**, and use it to find the eigenvalues of **A**.
- (b) For each eigenvalue of **A** find the basis for the corresponding eigenspace.
- (c) Find an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- (d) Find \mathbf{A}^{50} and $\mathbf{A}^{1/2}$.
- 4. Let W be the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3\\0\\2\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2\\1\\-1\\3 \end{bmatrix}.$$

- (a) 15 pts. Beginning with the vector \mathbf{v}_1 , use the Gram-Schmidt Orthogonalization Process to obtain an orthogonal basis for W.
- (b) 5 pts. Find an orthonormal basis for W.