Math 260 Summer 2015 Exam 2

NAME:

Vector Space Axioms:

VS1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any $\mathbf{u}, \mathbf{v} \in V$ VS2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ VS3. There exists some $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for any $\mathbf{u} \in V$ VS4. For each $\mathbf{u} \in V$ there exists some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ VS5. For any $a \in \mathbb{F}$ and $\mathbf{u}, \mathbf{v} \in V$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ VS6. For any $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$, $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ VS7. For any $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$, $a(b\mathbf{u}) = (ab)\mathbf{u}$ VS8. For all $\mathbf{u} \in V$, $1\mathbf{u} = \mathbf{u}$

- 1. 10 pts. Let V be a vector space. Use the vector space axioms to prove the following cancellation rule: If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$ implies that $\mathbf{u} = \mathbf{v}$.
- 2. 10 pts. Letting **x** denote $[x_1, x_2, x_3]^{\top}$, prove or disprove that

$$U = \left\{ \mathbf{x} : \|\mathbf{x}\| = |x_1| + |x_2| \right\}$$

is a subspace of \mathbb{R}^3 .

3. 10 pts. Write \mathbf{v} as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , if possible:

$$\mathbf{v} = \begin{bmatrix} 7\\16\\-3 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 4\\-3\\2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1\\3\\-1 \end{bmatrix}.$$

4. 10 pts. each Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 0 & 2 & 4 \end{bmatrix}.$$

- (a) Find a basis for $Col(\mathbf{A})$.
- (b) Find a basis for $Nul(\mathbf{A})$.
- 5. 10 pts. Show that for any two matrices **A** and **B** such that **AB** exists and **A** is invertible we have $Nul(\mathbf{B}) = Nul(\mathbf{AB})$.
- 6. 10 pts. For

$$\mathbf{C} = \begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 & 4 \end{bmatrix}$$

find the dimension of $\operatorname{Col}(\mathbf{C})$, $\operatorname{Row}(\mathbf{C})$ and $\operatorname{Nul}(\mathbf{C})$.

7. The ordered set

$$\mathcal{B} = \left(\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right)$$

is a basis for \mathbb{R}^2 . The standard basis is $\mathcal{E} = ([1,0]^{\top}, [0,1]^{\top})$.

- (a) 10 pts. Find the change of basis matrix $\mathbf{I}_{\mathcal{EB}}$ (a.k.a. transition matrix) for changing from the basis \mathcal{E} to the basis \mathcal{B} .
- (b) $\overline{[5 \text{ pts.}]}$ Use $\mathbf{I}_{\mathcal{EB}}$ to find the \mathcal{B} -coordinates of $\mathbf{x} = [2, -5]^{\top}$. (That is, find the components of \mathbf{x} in the basis \mathcal{B} .)
- 8. Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation for which

$$L\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}$$
 and $L\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\\-1\end{bmatrix}$.

- (a) 10 pts. Find the matrix [L] (with respect to the standard bases for \mathbb{R}^2 and \mathbb{R}^3) that represents the transformation L.
- (b) <u>5 pts.</u> Find a general formula for L. That is, find the 3×1 matrix $L([x, y]^{\top})$.
- (c) 10 pts. Find the range and kernel of L. Is L one-to-one?