Math 260 Summer 2014 Exam 2

NAME:

1. 10 pts. each Consider the system of equations

$$\begin{cases} 2x + y + z = 3\\ x - y + 2z = 3\\ x - 2y + \lambda z = 4 \end{cases}$$

Determine for which values of λ , if any, the system has:

- (a) No solution.
- (b) A unique solution, in which case give the solution.
- (c) Infinitely many solutions, in which case give the solution.
- 2. 10 pts. each Let $Mat_2(\mathbb{R})$ denote the vector space consisting of 2×2 matrices under the usual operations of matrix addition and scalar multiplication. Let

$$W_1 = \left\{ \mathbf{A} \in \operatorname{Mat}_2(\mathbb{R}) : \mathbf{A}^\top = \mathbf{A} \right\} \quad \text{and} \quad W_2 = \left\{ \begin{bmatrix} a^2 & 0\\ 0 & b^2 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

- (a) Prove or disprove that W_1 is a subspace of $Mat_2(\mathbb{R})$.
- (b) Prove or disprove that W_2 is a subspace of $Mat_2(\mathbb{R})$.
- 3. 10 pts. Let

$$\mathbf{u}_1 = \begin{bmatrix} -1\\ 3 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 2\\ -6 \end{bmatrix}$.

Prove or disprove that $\text{Span}\{\mathbf{u}_1,\mathbf{u}_2\} = \mathbb{R}^2$.

4. 10 pts. each Let

$$\mathbf{u}_1 = \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -2\\3\\2 \end{bmatrix}.$$

- (a) Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly independent set.
- (b) The ordered set $\mathcal{B} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ is a basis for \mathbb{R}^3 . Given

$$\mathbf{v} = \begin{bmatrix} -6\\ -10\\ -5 \end{bmatrix},$$

find $[\mathbf{v}]_{\mathcal{B}}$, the coordinates of \mathbf{v} with respect to the basis \mathcal{B} .

5. 10 pts. each

- (a) Write down a basis for the yz-plane in \mathbb{R}^3 .
- (b) The plane x + 2y 3z = 0 is a subspace of \mathbb{R}^3 . Find a basis for it.