1. 10 pts . Use a linear transformation and appropriate theorems to determine the dimension of the subspace S of \mathbb{R}^{n} given by

$$
S=\left\{\left\langle a_{1}, \ldots, a_{n}\right\rangle: a_{1}+\cdots+a_{n}=0\right\} .
$$

2. Let $\operatorname{Mat}_{n}(\mathbb{R})$ be the vector space consisting of all $n \times n$ matrices with real-valued entries, and define $Q: \operatorname{Mat}_{n}(\mathbb{R}) \rightarrow \operatorname{Mat}_{n}(\mathbb{R})$ by

$$
Q(\mathbf{A})=\frac{\mathbf{A}-\mathbf{A}^{\top}}{2}
$$

where \mathbf{A}^{\top} denotes the transpose of the matrix \mathbf{A}.
(a) 5 pts. Show that Q is linear.
(b) 10 pts. Describe the kernel of Q, and determine its dimension.
(c) 5 pts. What is the image of Q ?
3. 10 pts . Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by

$$
L\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
3 x_{1}+2 x_{2}-7 x_{3} \\
4 x_{1}-6 x_{2}+5 x_{3}
\end{array}\right]
$$

What is the matrix corresponding to L ?
4. 10 pts. Two bases for the vector space $\mathbb{P}_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}$ are

$$
\mathcal{B}=\left\{1, x, x^{2}\right\} \quad \text { and } \quad \mathcal{D}=\left\{1,1+x, 1+x+x^{2}\right\} .
$$

Find the coordinate transformation (a.k.a. change of basis) matrix from \mathcal{B} to \mathcal{D}, and also from \mathcal{D} to \mathcal{B}.
5. 10 pts . Find the dimension of the space of solutions to the system of equations

$$
\left\{\begin{array}{l}
2 x+y-z=0 \\
2 x+y+z=0
\end{array}\right.
$$

and then find a basis for the space of solutions.
6. Let $P: V \rightarrow V$ be a linear map such that $P \circ P=P$.
(a) 10 pts. Show that $V=\operatorname{Ker}(P)+\operatorname{Im}(P)$.
(b) 5 pts. Show that $\operatorname{Ker}(P) \cap \operatorname{Im}(P)=\{\mathbf{0}\}$.
7. 10 pts . Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
L(x, y)=(2 x+y, 3 x-5 y) .
$$

Show that L is invertible.
8. 10 pts. Let $L: V \rightarrow V$ be a linear transformation such that $L^{2}+2 L+I=O$. Show that L is invertible.
9. Let \mathbf{A} be a symmetric $n \times n$ matrix. Given column vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, define

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{A} \mathbf{y} .
$$

(a) 10 pts. Show that this formula satisfies the first three axioms of an inner product (see below).
(b) 5 pts. Give an example of a nonzero symmetric 2×2 matrix \mathbf{A} such that the fourth axiom of an inner product is not satisfied in general.
10. 15 pts. Find an orthonormal basis for the subspace of \mathbb{R}^{4} generated by $\langle 1,1,0,0\rangle,\langle 1,-1,1,1\rangle$, and $\langle-1,0,2,1\rangle$.

Axioms of an Inner Product \langle,$\rangle for a vector space V$ over \mathbb{R}

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.
2. $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
3. $\langle x \mathbf{u}, \mathbf{v}\rangle=x\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, x \mathbf{v}\rangle$ for all $\mathbf{u} \in V, x \in \mathbb{R}$.
4. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ for all $\mathbf{u} \in V$, and $\langle\mathbf{u}, \mathbf{u}\rangle>0$ if $\mathbf{u} \neq \mathbf{0}$.
