NAME:

- 1. 10 pts. Let $\mathbf{a} \in \mathbb{R}^n$ be a nonzero vector and let $c \in \mathbb{R}$ be fixed. Show that the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{a} \cdot \mathbf{x} \geq c$ is convex.
- 2. $\lceil 10 \rceil$ pts. Show that the vectors $\langle 1, 2 \rangle$ and $\langle 1, 5 \rangle$ are linearly independent.
- 3. 10 pts. Let $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{R}^n$ be mutually orthogonal nonzero vectors. That is, $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ if $i \neq j$, and $\mathbf{v}_i \neq \mathbf{0}$ for all $1 \leq i \leq r$. Prove that they are linearly independent.
- 4. 10 pts. Find the rank of

$$\begin{bmatrix} 1 & 2 & -3 \\ -1 & -2 & 3 \\ 4 & 8 & -12 \\ 1 & -1 & 5 \end{bmatrix}$$

by putting the matrix in either row echelon or column echelon form.

- 5. 10 pts. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by T(x,y) = (3x,7y). Describe the image under T of the points lying on the circle $x^2 + y^2 = 1$.
- 6. 10 pts. Is the transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by $T(x, y, z) = \langle 2x, y z \rangle$ linear? If it is, prove it. If it isn't, give an example in which linearity is violated.
- 7. 10 pts. Show that the image of a convex set under a linear transformation is convex.
- 8. $\lceil 5 \text{ pts. each} \rceil$ Let $L: V \to W$ be a linear transformation, and $\dim(V) = \dim(W)$.
 - (a) Show that if $Ker(L) = \{0\}$, then Im(L) = W.
 - (b) Show that if Im(L) = W, the $Ker(L) = \{0\}$.
- 9. 10 pts. Let $L: V \to W$ be a linear map. Show that if $\dim(V) > \dim(W)$, then $\operatorname{Ker}(L) \neq \{0\}$.
- 10. 10 pts. Find the dimension of the space of solutions to the system of equations

$$\begin{cases} 2x + y - z = 0 \\ 2x + y + z = 0 \end{cases}$$

and then find a basis for the space of solutions.

11. 10 pts. Find the dimension of the subspace of \mathbb{R}^7 that is orthogonal (i.e. perpendicular) to the vectors $\langle 1, 1, -2, 3, 4, 5, 6 \rangle$ and $\langle 0, 0, 2, 1, 0, 7, 0 \rangle$,

stating the reason for your answer.

- 12. 10 pts. Let $L: V \to W$ be a linear transformation. Show that if S is an arbitrary line in V, then L(S)—the image of S under L—is either a point or a line in W.
- 13. 10 pts. Let U be a subspace of \mathbb{R}^n . Prove that U^{\perp} is also a subspace.

A few theorems (not comprehensive)

- 1. Let V be a vector space, and let $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_m\}=V$. If $\mathbf{w}_1,\ldots,\mathbf{w}_n\in V$ for n>m, then $\mathbf{w}_1,\ldots,\mathbf{w}_n$ are linearly dependent.
- 2. If W is a subspace of V, then $\dim(W) \leq \dim(V)$.
- 3. If $L: V \to W$ is linear, then $\dim(V) = \dim(\operatorname{Ker}(L)) + \dim(\operatorname{Im}(L))$.