Math 260 Summer 2012 Exam 1

NAME:

- 1. 10 pts. Given points p = (3, -1, 8) and q = (-2, -9, 0) in \mathbb{R}^3 , find 3p, p + q, and p 2q.
- 2. 10 pts. Given points p = (-2, 0), q = (8, -5), r = (-11, -6), s = (17, 1), find the equivalent located vectors: $\vec{pq}, \vec{pr}, \vec{rp}, \vec{ps}, \vec{qs}, \vec{sq}$. (It may help to plot the points.)
- 3. 10 pts. Let $\mathbf{u} \in \mathbb{R}^n$ be a vector orthogonal (i.e. perpendicular) to every vector \mathbf{x} in \mathbb{R}^n . Show that $\mathbf{u} = \mathbf{0}$, the zero vector.
- 4. 10 pts. each Let $\mathbf{u} = \langle 2, -1, 5 \rangle$ and $\mathbf{v} = \langle -1, 1, 1 \rangle$.
 - (a) Find $|\mathbf{u}|$ and $|\mathbf{v}|$.
 - (b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
 - (c) Find the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree.
- 5. <u>10 pts. each</u> Let $\mathbf{A} = \begin{bmatrix} 2 & -3 & 0 \\ -1 & 4 & 6 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} -7 & 5 \\ 0 & 1 \\ 3 & -9 \end{bmatrix}$ (a) Find $\mathbf{A}\mathbf{B}$ (b) Find $\mathbf{A}\mathbf{B}$ 6. <u>10 pts.</u> Given $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix},$

find \mathbf{A}^2 , \mathbf{A}^3 , and \mathbf{A}^4 .

7. 10 pts. Find the inverse for the matrix

$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

8. 10 pts. Show that the only solution to the system

$$\begin{cases} 4x - 7y + 3z = 0\\ x + y = 0\\ y - 6z = 0 \end{cases}$$

is the trivial solution.

9. 15 pts. Using elementary row operations, find a row-equivalent matrix for

$$\begin{bmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{bmatrix}$$

that is in row echelon form.

10. 15 pts. Using elementary row operations, find the inverse for the matrix

2	4	3
-1	3	0
0	2	1

11. 15 pts. Let V be the set of 2×2 matrices of the form

a	0]
1	b

with the standard operations of matrix addition and scalar multiplication. Determine whether V is a vector space. If it is not, indicate which axioms and closure properties fail to hold.

12. 10 pts. Show that the set of all $(x, y) \in \mathbb{R}^2$ such that x + 4y = 0 forms a subspace of \mathbb{R}^2 .

13. 10 pts. Show that if U and W are subspaces of V, then U + W is also a subspace of V.

14. 10 pts. each Determine whether the given vectors span \mathbb{R}^3 . (a) $\mathbf{v}_1 = \langle 1, 1, 1 \rangle$, $\mathbf{v}_2 = \langle 2, 2, 0 \rangle$, $\mathbf{v}_3 = \langle 3, 0, 0 \rangle$.

(b)
$$\mathbf{v}_1 = \langle 2, -1, 3 \rangle, \, \mathbf{v}_2 = \langle 4, 1, 2 \rangle, \, \mathbf{v}_3 = \langle 8, -1, 8 \rangle$$

Vector Space Axioms

A1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any $\mathbf{u}, \mathbf{v} \in V$ A2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ A3. There exists some $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ for any $\mathbf{u} \in V$ A4. For each $\mathbf{u} \in V$ there exists some $-\mathbf{u} \in V$ such that $-\mathbf{u} + \mathbf{u} = \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ A5. For any $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ A6. For any $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$, $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ A7. For any $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$, $a(b\mathbf{u}) = (ab)\mathbf{u}$ A8. For all $\mathbf{u} \in V$, $1\mathbf{u} = \mathbf{u}$