Math 260 Spring 2014 Exam 4

NAME:

1. Consider the vector space $W \subseteq \mathbb{R}^3$ given by

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x - 2y + 3z = 0 \right\}.$$

Two ordered bases for W are

$$\mathcal{B} = \left(\begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right) \quad \text{and} \quad \mathcal{C} = \left(\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right).$$

- (a) 10 pts. Show that $\mathbf{v} = [5, 7, 3]^{\top}$ is in W, and find $[\mathbf{v}]_{\mathcal{B}}$, the \mathcal{B} -coordinates of \mathbf{v} .
- (b) 15 pts. Find a transition matrix \mathbf{M} from coordinates in the basis \mathcal{B} to coordinates in the basis \mathcal{C} , so that $\mathbf{M}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$ for all $\mathbf{x} \in W$.
- (c) 10 pts. Use **M** to find $[\mathbf{v}]_{\mathcal{C}}$, where $\mathbf{v} = [5, 7, 3]^{\top}$.
- 2. 15 pts. Suppose that $L: \mathbb{R}^2 \to \mathbb{R}^3$ is the linear transformation given by

$$L\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2\\ -5x_1 + 13x_2\\ -7x_1 + 16x_2 \end{bmatrix}.$$

Find $[L]_{\mathcal{BC}}$, the matrix corresponding to L with respect to the ordered bases

$$\mathcal{B} = \left(\begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix} \right) \quad \text{and} \quad \mathcal{C} = \left(\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right)$$

3. 10 pts. each For the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

do the following:

- (a) Find the characteristic polynomial $P_{\mathbf{A}}(t)$.
- (b) Find all real eigenvalues for **A**.
- (c) Find a basis for the eigenspace corresponding to the smallest eigenvalue.
- (d) Find a basis for the eigenspace corresponding to the largest eigenvalue.