$1 \mathbf{0} \in \mathbf{U}$ since \mathbf{U} is a subspace, and $T(\mathbf{0})=\mathbf{0}$ since T is linear. Therefore $\mathbf{0} \in T(\mathbf{U})$.
Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in T(\mathbf{U})$, so there exists $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathrm{U}$ such that $T\left(\mathbf{u}_{k}\right)=\mathbf{w}_{k}$. Because \mathbf{U} is a subspace, $\mathbf{u}_{1}+\mathbf{u}_{2} \in \mathbf{U}$; and because T is linear, $T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)=\mathbf{w}_{1}+\mathbf{w}_{2}$. Thus $\mathbf{w}_{1}+\mathbf{w}_{2} \in T(\mathrm{U})$.

Let $\mathbf{w} \in T(\mathbf{U})$ and $c \in \mathbb{R}$. There exists $\mathbf{u} \in \mathrm{U}$ such that $T(\mathbf{u})=\mathbf{w}$, with $c \mathbf{u} \in \mathbf{U}$ also. Now, $T(c \mathbf{u})=c T(\mathbf{u})=c \mathbf{w}$ shows that $c \mathbf{w} \in T(\mathbf{U})$.

2 Let A be the given matrix. By definition $\operatorname{Nul} A=\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}$, so the job is to find a basis for the solution set to the homogeneous system with augmented matrix

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 2 & -8 & 1 & 9 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 0 & 0 & 1 & -3 & 0
\end{array}\right]
$$

We find that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 x_{3}-7 x_{5} \\
4 x_{3}-6 x_{5} \\
x_{3} \\
3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right],
$$

where x_{3} and x_{5} are free, and so a basis for $\operatorname{Nul} A$ is the set

$$
\left\{\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right]\right\}
$$

3 Define the matrix $M=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{5}\right]$, so the space in question is $\operatorname{Col} M$. With a series of row operations get a new matrix B that is in echelon form:

$$
M=\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & -1 & 2 & 3 & -1 \\
1 & 1 & -1 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -7 & 8 \\
0 & 1 & 0 & -3 & 5 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B
$$

The last two columns of B can each be expressed as linear combinations of the first three columns, so can be discarded. The same relationship must hold for the columns of M, so any basis for $\mathrm{Col} M$ must involve only $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ (i.e. the first three columns of M). But the first three columns of M must be linearly independent since the first three columns of B are. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set that spans $\operatorname{Col} M$, and therefore forms a basis for the space in question.

4 Form the matrix $A=\left[\begin{array}{rr}1 & 2 \\ -2 & 3\end{array}\right]$. Then A is invertible since $\operatorname{det} A=7 \neq 0$, and then by the Invertible Matrix Theorem the columns of A (i.e. the vectors in \mathcal{B}) form a basis for \mathbb{R}^{2}. As for the change-of-coordinates matrix, by inspection we have $P_{\mathcal{B}}=A$.

5 Let \mathcal{B} be a basis for U , so \mathcal{B} is a linearly independent set of n vectors in U such that Span $\mathcal{B}=\mathrm{U}$. But $\mathrm{U} \subseteq \mathrm{V}$, so \mathcal{B} is also a linearly independent set of n vectors in V , and because $\operatorname{dim} \mathrm{V}=n$, the Basis Theorem (Theorem 4.13) implies that \mathcal{B} is a basis for V as well. Therefore $\mathrm{V}=\operatorname{Span} \mathcal{B}=\mathrm{U}$.

6 First we get $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]$. To find $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}$ we find scalars x_{1}, x_{2} such that $x_{1} \mathbf{c}_{1}+$ $x_{2} \mathbf{c}_{2}=\mathbf{b}_{1}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
4 & 1 & 8
\end{array}\right]
$$

Solving gives $x_{1}=3$ and $x_{2}=-4$. To find $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}$ we find y_{1}, y_{2} such that $y_{1} \mathbf{c}_{1}+y_{2} \mathbf{c}_{2}=\mathbf{b}_{2}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
4 & 1 & -5
\end{array}\right]
$$

Solving gives $y_{1}=-2$ and $y_{2}=3$. Therefore

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rr}
3 & -2 \\
-4 & 3
\end{array}\right] \quad \text { and } \quad P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right] .
$$

7 For $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)=\left(1-2 t+t^{2}, 3-5 t+4 t^{2}, 2 t+3 t^{2}\right)$ let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. Without calculation we have

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\left[\mathbf{b}_{3}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rrr}
1 & 3 & 0 \\
-2 & -5 & 2 \\
1 & 4 & 3
\end{array}\right] .
$$

The \mathcal{C}-coordinates of $t-t^{2}$ are $\left[t-t^{2}\right]_{\mathcal{C}}=\left[\begin{array}{ll}0 & 1 \\ -1\end{array}\right]^{\top}$, and so the \mathcal{B}-coordinates are

$$
\left[t-t^{2}\right]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[t-t^{2}\right]_{\mathcal{C}}=\left(P_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}\left[t-t^{2}\right]_{\mathcal{C}}=\left[\begin{array}{rrr}
-23 & -9 & 6 \\
8 & 3 & -2 \\
-3 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-15 \\
5 \\
-2
\end{array}\right] .
$$

8 Suppose λ is an eigenvalue of A, so $\operatorname{det}(A-\lambda I)=0$. But $\operatorname{det} M=\operatorname{det} M^{\top}$ for any square matrix M, so

$$
\operatorname{det}\left(A^{\top}-\lambda I\right)=\operatorname{det}\left[A^{\top}-(\lambda I)^{\top}\right]=\operatorname{det}\left[(A-\lambda I)^{\top}\right]=\operatorname{det}(A-\lambda I)=0
$$

and hence λ is an eigenvalue of A^{\top}. Now, if λ is an eigenvalue of A^{\top} then it is an eigenvalue of $\left(A^{\top}\right)^{\top}=A$.

9 Characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
7-\lambda & -2 \\
2 & 3-\lambda
\end{array}\right|=\lambda^{2}-10 \lambda+25
$$

Eigenvalues are the roots of $\operatorname{det}(A-\lambda I)=0$, or $\lambda=5$.

10 Bases for the eigenspaces $E_{A}(3)$ and $E_{A}(4)$ are

$$
\mathcal{B}_{1}=\left\{\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{B}_{2}=\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right\}
$$

respectively. Therefore $A=P D P^{-1}$ for

$$
P=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

