1 Using the definition of a matrix product I've used in class (could also use the less conventional definition on page 101 of the textbook), the $i j$-entry of $A I_{n}$ is

$$
\left[A I_{n}\right]_{i j}=\sum_{k=1}^{n}[A]_{i k}\left[I_{n}\right]_{k j}=[A]_{i j}\left[I_{n}\right]_{j j}=[A]_{i j}
$$

since $\left[I_{n}\right]_{k j}=0$ when $k \neq j$ and $\left[I_{n}\right]_{k j}=1$ when $k=j$. So the $i j$-entry of $A I_{n}$ equals the $i j$-entry of A, and we conclude that $A I_{n}=A$.

2 In the course of attempting to find A^{-1} we perform the row operations $-4 \mathrm{R}_{1}+\mathrm{R}_{2}, 2 \mathrm{R}_{1}+\mathrm{R}_{3}$, and $-2 \mathrm{R}_{2}+\mathrm{R}_{3}$ on $[A \mid I]$ to obtain $[B \mid C]$ with

$$
B=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

(what C is doesn't matter). Since B only has two pivots and A is row equivalent to B, we conclude that A has only two pivot positions, and therefore A is not invertible by the invertible matrix theorem.

3 The standard matrix for T is

$$
A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{rr}
6 & -8 \\
-5 & 7
\end{array}\right],
$$

and since $\operatorname{det} A=2 \neq 0$, Theorem 3.4 implies that A is invertible, and so T is invertible by Theorem 2.9, with $T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}$. Now,

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ll}
7 & 8 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
7 / 2 & 4 \\
5 / 2 & 3
\end{array}\right],
$$

so that

$$
T^{-1}\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
\frac{7}{2} & 4 \\
\frac{5}{2} & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{7}{2} x_{1}+4 x_{2} \\
\frac{5}{2} x_{1}+3 x_{2}
\end{array}\right]
$$

4 The equation becomes

$$
\left|\begin{array}{cc}
a+1 & b \\
c & d+1
\end{array}\right|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \Rightarrow \quad(a+1)(d+1)-b c=a d-b c+1
$$

which simplifies to $a+d=0$, and therefore the only needed condition is $d=-a$.

5 Since $\operatorname{det} I=1$, Theorem 3.6 implies

$$
1=\operatorname{det} I=\operatorname{det}\left(C^{\top} C\right)=\left(\operatorname{det} C^{\top}\right)(\operatorname{det} C) ;
$$

but $\operatorname{det} C^{\top}=\operatorname{det} C$ by Theorem 3.5, so $(\operatorname{det} C)^{2}=1$ and hence $|\operatorname{det} C|=1$.

6 The system is $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{rr}
-5 & 2 \\
3 & -1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
9 \\
-4
\end{array}\right]
$$

We have

$$
\operatorname{det} A=-1, \quad \operatorname{det} A_{1}(\mathbf{b})=\left|\begin{array}{rr}
9 & 2 \\
-4 & -1
\end{array}\right|=-1, \quad \operatorname{det} A_{2}(\mathbf{b})=\left|\begin{array}{rr}
-5 & 9 \\
3 & -4
\end{array}\right|=-7 .
$$

By Cramer's rule, $x_{1}=\operatorname{det} A_{1}(\mathbf{b}) / \operatorname{det} A=1$ and $x_{2}=\operatorname{det} A_{1}(\mathbf{b}) / \operatorname{det} A=7$.

7 We're given $\mathrm{H}=\left\{X \in \mathbb{R}^{2 \times 4}: C X=O\right\}$. Since $O \in \mathbb{R}^{2 \times 4}$ is such that $C O=O$, we have $O \in \mathrm{H}$. Also, for any $X, Y \in \mathrm{H}$ we have $C X=O$ and $C Y=O$, and so by Theorem 2.2(b)

$$
C(X+Y)=C X+C Y=O+O=O
$$

so that $X+Y \in \mathrm{H}$. Finally, for $a \in \mathbb{R}$ and $X \in \mathrm{H}$, Theorem 2.2(d) yields $C(a X)=a(C X)=$ $a O=O$, and thus $a X \in \mathrm{H}$. Therefore H is a subspace.

8 The zero function on $[a, b]$, which we'll denote here by 0 , is certainly a continuous real-valued function, and since $0(a)=0=0(b)$ it follows that $0 \in \mathrm{H}$.

Next, suppose $f, g \in \mathrm{H}$, so f and g are continuous and real-valued on $[a, b]$ such that $f(a)=f(b)$ and $g(a)=g(b)$. Adding the two equations gives $f(a)+g(a)=f(b)+g(b)$, and thus $(f+g)(a)=(f+g)(b)$, and since calculus informs us that $f+g$ must also be continuous and real-valued on $[a, b]$, we conclude that $f+g \in \mathrm{H}$. Therefore H is closed under vector addition.

Finally, for any $f \in \mathrm{H}$ and scalar $c \in \mathbb{R}$ we know that $c f$ must be continuous and realvalued, and since $f(a)=f(b) \Rightarrow c f(a)=c f(b) \Rightarrow(c f)(a)=(c f)(b)$, we conclude that $c f \in \mathrm{H}$. Therefore H is closed under scalar multiplication. This shows that H is a subspace of $\mathcal{C}[a, b]$.

9 First, $\mathbf{0}=\mathbf{0}+\mathbf{0}$ for $\mathbf{0} \in \mathrm{H}, \mathrm{K}$, so that $\mathbf{0} \in \mathrm{H}+\mathrm{K}$ and $\mathrm{H}+\mathrm{K} \neq \varnothing$.
Let $\mathbf{x}, \mathbf{y} \in \mathrm{H}+\mathrm{K}$, so $\mathbf{x}=\mathbf{u}_{1}+\mathbf{v}_{1}$ and $\mathbf{y}=\mathbf{u}_{2}+\mathbf{v}_{2}$ for some $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathrm{H}$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathrm{~K}$. Now, $\mathbf{u}_{1}+\mathbf{u}_{2} \in \mathrm{H}$ and $\mathbf{v}_{1}+\mathbf{v}_{2} \in \mathrm{~K}$ since H and K are vector spaces, and because $\mathbf{x}+\mathbf{y}=$ $\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$ it follows that $\mathbf{x}+\mathbf{y} \in \mathrm{H}+\mathrm{K}$ also. Thus $\mathrm{H}+\mathrm{K}$ is closed under vector addition.

Now let $\mathbf{w} \in H+K$ and $c \in \mathbb{R}$. There exists $\mathbf{u} \in \mathrm{H}$ and $\mathbf{v} \in \mathrm{K}$ such that $\mathbf{w}=\mathbf{u}+\mathbf{v}$, and since H and K are vector spaces we also have $c \mathbf{u} \in \mathrm{H}$ and $c \mathbf{v} \in \mathrm{~K}$, so that $c \mathbf{w}=c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \in \mathrm{H}+\mathrm{K}$. Therefore $\mathrm{H}+\mathrm{K}$ is closed under scalar multiplication.

