
Math 260 Exam #2 Key (Summer 2022)

1 Using the definition of a matrix product I’ve used in class (could also use the less conven-
tional definition on page 101 of the textbook), the ij-entry of AIn is

[AIn]ij =
n∑

k=1

[A]ik[In]kj = [A]ij[In]jj = [A]ij,

since [In]kj = 0 when k ̸= j and [In]kj = 1 when k = j. So the ij-entry of AIn equals the
ij-entry of A, and we conclude that AIn = A.

2 In the course of attempting to find A−1 we perform the row operations −4R1+R2, 2R1+R3,
and −2R2 + R3 on [A | I] to obtain [B |C] with

B =

1 −2 1
0 1 −1
0 0 0


(what C is doesn’t matter). Since B only has two pivots and A is row equivalent to B, we
conclude that A has only two pivot positions, and therefore A is not invertible by the invertible
matrix theorem.

3 The standard matrix for T is

A = [T (e1) T (e2)] =

[
6 −8

−5 7

]
,

and since detA = 2 ̸= 0, Theorem 3.4 implies that A is invertible, and so T is invertible by
Theorem 2.9, with T−1(x) = A−1x. Now,

A−1 =
1

2

[
7 8
5 6

]
=

[
7/2 4
5/2 3

]
,

so that

T−1(x1, x2) =

[
7
2

4

5
2

3

][
x1

x2

]
=

[
7
2
x1 + 4x2

5
2
x1 + 3x2

]
.

4 The equation becomes∣∣∣∣ a+ 1 b
c d+ 1

∣∣∣∣ = ∣∣∣∣ a b
c d

∣∣∣∣+ ∣∣∣∣ 1 0
0 1

∣∣∣∣ ⇒ (a+ 1)(d+ 1)− bc = ad− bc+ 1,

which simplifies to a+ d = 0, and therefore the only needed condition is d = −a.

5 Since det I = 1, Theorem 3.6 implies

1 = det I = det(C⊤C) = (detC⊤)(detC);

but detC⊤ = detC by Theorem 3.5, so (detC)2 = 1 and hence | detC| = 1.



2

6 The system is Ax = b with

A =

[
−5 2
3 −1

]
and b =

[
9
−4

]
.

We have

detA = −1, detA1(b) =

∣∣∣∣ 9 2
−4 −1

∣∣∣∣ = −1, detA2(b) =

∣∣∣∣ −5 9
3 −4

∣∣∣∣ = −7.

By Cramer’s rule, x1 = detA1(b)/ detA = 1 and x2 = detA1(b)/ detA = 7.

7 We’re given H = {X ∈ R2×4 : CX = O}. Since O ∈ R2×4 is such that CO = O, we have
O ∈ H. Also, for any X, Y ∈ H we have CX = O and CY = O, and so by Theorem 2.2(b)

C(X + Y ) = CX + CY = O +O = O,

so that X + Y ∈ H. Finally, for a ∈ R and X ∈ H, Theorem 2.2(d) yields C(aX) = a(CX) =
aO = O, and thus aX ∈ H. Therefore H is a subspace.

8 The zero function on [a, b], which we’ll denote here by 0, is certainly a continuous real-valued
function, and since 0(a) = 0 = 0(b) it follows that 0 ∈ H.

Next, suppose f, g ∈ H, so f and g are continuous and real-valued on [a, b] such that
f(a) = f(b) and g(a) = g(b). Adding the two equations gives f(a) + g(a) = f(b) + g(b), and
thus (f + g)(a) = (f + g)(b), and since calculus informs us that f + g must also be continuous
and real-valued on [a, b], we conclude that f + g ∈ H. Therefore H is closed under vector
addition.

Finally, for any f ∈ H and scalar c ∈ R we know that cf must be continuous and real-
valued, and since f(a) = f(b) ⇒ cf(a) = cf(b) ⇒ (cf)(a) = (cf)(b), we conclude that cf ∈ H.
Therefore H is closed under scalar multiplication. This shows that H is a subspace of C[a, b].

9 First, 0 = 0+ 0 for 0 ∈ H,K, so that 0 ∈ H+ K and H+ K ̸= ∅.
Let x,y ∈ H + K, so x = u1 + v1 and y = u2 + v2 for some u1,u2 ∈ H and v1,v2 ∈ K.

Now, u1 + u2 ∈ H and v1 + v2 ∈ K since H and K are vector spaces, and because x + y =
(u1 + u2) + (v1 + v2) it follows that x + y ∈ H + K also. Thus H + K is closed under vector
addition.

Now letw ∈ H+K and c ∈ R. There exists u ∈ H and v ∈ K such thatw = u+v, and since H
and K are vector spaces we also have cu ∈ H and cv ∈ K, so that cw = c(u+v) = cu+cv ∈ H+K.
Therefore H+ K is closed under scalar multiplication.


