1 The system is equivalent to

$$(x_1, x_2) = \left(g - 3x_2, \frac{8 - 4g}{h - 12}\right),$$

from which we conclude that the system has no solution if $g \neq 2$, h = 12; a unique solution if $g \in \mathbb{R}$, $h \neq 12$; and an infinite number of solutions if g = 2, h = 12.

2 The system is equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & | & -9 \\ 0 & 1 & 0 & | & 4 \end{bmatrix}$$

and so the solution set is: $x_1 = -9$, $x_2 = 4$, x_3 free.

3 Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$. The system $A\mathbf{x} = \mathbf{b}$ is found by row operations to be inconsistent. That is, there exists no $\mathbf{x} = (x_1, x_2, x_3)$ such that $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$, and so \mathbf{b} is not a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$.

4 Augmented matrix is

$$\begin{bmatrix} 1 & 2 & 1 & | & 0 \\ -3 & -1 & 2 & | & 1 \\ 0 & 5 & 3 & | & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 5 & 5 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

Solution is $(x_1, x_2, x_3) = (\frac{3}{5}, -\frac{4}{5}, 1).$

5 Let $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$. With row operations we find that

$$A \sim \begin{bmatrix} -2 & 8 & -5\\ 0 & -3 & -1\\ 0 & 0 & 4 \end{bmatrix},$$

which shows that A has a pivot position in every row, and thus each $\mathbf{b} \in \mathbb{R}^3$ is a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 (see Theorem 1.4 on page 39 of the textbook—a forerunner of the Invertible Matrix Theorem). This means $\mathbf{b} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ for each $\mathbf{b} \in \mathbb{R}^3$, so that $\mathbb{R}^3 \subseteq \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, and therefore $\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \mathbb{R}^3$. That is, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ spans \mathbb{R}^3 .

6 We must find integers x_1, \ldots, x_4 such that

$$x_1 \operatorname{Na_3PO_4} + x_2 \operatorname{Ba}(\operatorname{NO_3})_2 \longrightarrow x_3 \operatorname{Ba_3}(\operatorname{PO_4})_2 + x_4 \operatorname{NaNO_3}$$

is a balanced equation. Listing in the order Na, P, O, Ba, N, we need

$$x_{1}\begin{bmatrix}3\\1\\4\\0\\0\end{bmatrix} + x_{2}\begin{bmatrix}0\\0\\6\\1\\2\end{bmatrix} = x_{3}\begin{bmatrix}0\\2\\8\\3\\0\end{bmatrix} + x_{4}\begin{bmatrix}1\\0\\3\\0\\1\end{bmatrix}.$$

We find that $x_1 = 2x_3$, $x_2 = 3x_3$, $x_4 = 6x_3$, with x_3 free. Letting $x_3 = 1$ then gives $(x_1, x_2, x_3, x_4) = (2, 3, 1, 6)$.

7 Let A have the vectors as its columns. Now, $A\mathbf{x} = \mathbf{0}$ has augmented matrix

1	-5	1	0		[1	-5	1	0		[1	-5	1	0
-1	7	1	0	\sim	0	2	2	0	\sim	0	1	1	0
3	8	h	0		0	23	h-3	0		0	0	h-26	0

The system has nontrivial solutions if and only if h = 26, whereupon the IMT implies the columns of A (i.e. the vectors given) are linearly dependent.

8 Since $T(\mathbf{e}_k) = \mathbf{v}_k$ for k = 1, 2, the standard matrix is readily obtained:

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} -2 & 7\\ 5 & -3 \end{bmatrix}.$$

9 T linear if and only if $T(\mathbf{0}) = \mathbf{0}$. However, here we have $T(\mathbf{0}) = A\mathbf{0} + \mathbf{b} = \mathbf{b} \neq \mathbf{0}$, and so T is not linear.

10a The standard matrix for T is

$$A = \begin{bmatrix} 1 & 4 & -5 \\ 3 & -7 & 4 \end{bmatrix}.$$

Now, $T(\mathbf{x}) = \mathbf{0}$ if and only if $A\mathbf{x} = \mathbf{0}$, but the system $A\mathbf{x} = \mathbf{0}$ has augmented matrix

$$\begin{bmatrix} 1 & 4 & -5 & | & 0 \\ 3 & -7 & 4 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix}$$

which has solution set $x_1 = x_3$, $x_2 = x_3$, x_3 free. Thus we find that, for instance, $\mathbf{x} = (1, 1, 1)$ is a solution to $A\mathbf{x} = \mathbf{0}$, so $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions. This immediately implies the column vectors of A are linearly dependent, and therefore T is not one-to-one by Theorem 2 on the back of the exam.

10b From the work in part (a) we see that A has a pivot position in every row, and thus $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^2$ (see Theorem 1.4 again). Since $T(\mathbf{x}) = A\mathbf{x}$, it follows that T is onto.

11 Let $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$. Suppose $T(\mathbf{x}) = A\mathbf{x}$ and $T(\mathbf{x}) = B\mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^n$. Now, for each $1 \le k \le n$, $T(\mathbf{e}_k) = A\mathbf{e}_k = \mathbf{a}_k$ and $T(\mathbf{e}_k) = B\mathbf{e}_k = \mathbf{b}_k$, so that $\mathbf{a}_k = \mathbf{b}_k$ for each $1 \le k \le n$, and therefore A = B. (Note it is not essential to assume that A is the *standard* matrix for T, but the problem is stated as the textbook states it.)

12 Since

$$AB = \begin{bmatrix} 23 & 5k - 10 \\ -9 & k + 15 \end{bmatrix} \text{ and } BA = \begin{bmatrix} 23 & 15 \\ 6 - 3k & k + 15 \end{bmatrix},$$

we have AB = BA only if 5k - 10 = 15 and 6 - 3k = -9. Both equations are satisfied if and only if k = 5.