Math 260 Exam \#1 Key (Summer 2022)

1 The system is equivalent to

$$
\left(x_{1}, x_{2}\right)=\left(g-3 x_{2}, \frac{8-4 g}{h-12}\right)
$$

from which we conclude that the system has no solution if $g \neq 2, h=12$; a unique solution if $g \in \mathbb{R}, h \neq 12$; and an infinite number of solutions if $g=2, h=12$.

2 The system is equivalent to

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & -9 \\
0 & 1 & 0 & 4
\end{array}\right]
$$

and so the solution set is: $x_{1}=-9, x_{2}=4, x_{3}$ free.
3 Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$. The system $A \mathbf{x}=\mathbf{b}$ is found by row operations to be inconsistent. That is, there exists no $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$, and so \mathbf{b} is not a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$.

4 Augmented matrix is

$$
\left[\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
-3 & -1 & 2 & 1 \\
0 & 5 & 3 & -1
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 2 & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Solution is $\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{3}{5},-\frac{4}{5}, 1\right)$.

5 Let $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$. With row operations we find that

$$
A \sim\left[\begin{array}{rrr}
-2 & 8 & -5 \\
0 & -3 & -1 \\
0 & 0 & 4
\end{array}\right]
$$

which shows that A has a pivot position in every row, and thus each $\mathbf{b} \in \mathbb{R}^{3}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ (see Theorem 1.4 on page 39 of the textbook-a forerunner of the Invertible Matrix Theorem). This means $\mathbf{b} \in \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ for each $\mathbf{b} \in \mathbb{R}^{3}$, so that $\mathbb{R}^{3} \subseteq$ $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, and therefore $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\mathbb{R}^{3}$. That is, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans \mathbb{R}^{3}.

6 We must find integers x_{1}, \ldots, x_{4} such that

$$
x_{1} \mathrm{Na}_{3} \mathrm{PO}_{4}+x_{2} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow x_{3} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+x_{4} \mathrm{NaNO}_{3} .
$$

is a balanced equation. Listing in the order $\mathrm{Na}, \mathrm{P}, \mathrm{O}, \mathrm{Ba}, \mathrm{N}$, we need

$$
x_{1}\left[\begin{array}{l}
3 \\
1 \\
4 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
6 \\
1 \\
2
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
2 \\
8 \\
3 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
0 \\
3 \\
0 \\
1
\end{array}\right] .
$$

Collecting all terms on the left side of the equation yields a system with augmented matrix

$$
\left[\begin{array}{rrrr|r}
3 & 0 & 0 & -1 & 0 \\
1 & 0 & -2 & 0 & 0 \\
4 & 6 & -8 & -3 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 2 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & 0 & -2 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 6 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

We find that $x_{1}=2 x_{3}, x_{2}=3 x_{3}, x_{4}=6 x_{3}$, with x_{3} free. Letting $x_{3}=1$ then gives $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,3,1,6)$.

7 Let A have the vectors as its columns. Now, $A \mathbf{x}=\mathbf{0}$ has augmented matrix

$$
\left[\begin{array}{rrr|r}
1 & -5 & 1 & 0 \\
-1 & 7 & 1 & 0 \\
3 & 8 & h & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -5 & 1 & 0 \\
0 & 2 & 2 & 0 \\
0 & 23 & h-3 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -5 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & h-26 & 0
\end{array}\right]
$$

The system has nontrivial solutions if and only if $h=26$, whereupon the IMT implies the columns of A (i.e. the vectors given) are linearly dependent.

8 Since $T\left(\mathbf{e}_{k}\right)=\mathbf{v}_{k}$ for $k=1,2$, the standard matrix is readily obtained:

$$
A=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & \left.T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
-2 & 7 \\
5 & -3
\end{array}\right]
\end{array}\right.
$$

$9 T$ linear if and only if $T(\mathbf{0})=\mathbf{0}$. However, here we have $T(\mathbf{0})=A \mathbf{0}+\mathbf{b}=\mathbf{b} \neq \mathbf{0}$, and so T is not linear.

10a The standard matrix for T is

$$
A=\left[\begin{array}{rrr}
1 & 4 & -5 \\
3 & -7 & 4
\end{array}\right]
$$

Now, $T(\mathbf{x})=\mathbf{0}$ if and only if $A \mathbf{x}=\mathbf{0}$, but the system $A \mathbf{x}=\mathbf{0}$ has augmented matrix

$$
\left[\begin{array}{rrr|r}
1 & 4 & -5 & 0 \\
3 & -7 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

which has solution set $x_{1}=x_{3}, x_{2}=x_{3}, x_{3}$ free. Thus we find that, for instance, $\mathbf{x}=(1,1,1)$ is a solution to $A \mathbf{x}=\mathbf{0}$, so $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions. This immediately implies the column vectors of A are linearly dependent, and therefore T is not one-to-one by Theorem 2 on the back of the exam.

10b From the work in part (a) we see that A has a pivot position in every row, and thus $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{2}$ (see Theorem 1.4 again). Since $T(\mathbf{x})=A \mathbf{x}$, it follows that T is onto.

11 Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ and $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right]$. Suppose $T(\mathbf{x})=A \mathbf{x}$ and $T(\mathbf{x})=B \mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^{n}$. Now, for each $1 \leq k \leq n, T\left(\mathbf{e}_{k}\right)=A \mathbf{e}_{k}=\mathbf{a}_{k}$ and $T\left(\mathbf{e}_{k}\right)=B \mathbf{e}_{k}=\mathbf{b}_{k}$, so that $\mathbf{a}_{k}=\mathbf{b}_{k}$ for each $1 \leq k \leq n$, and therefore $A=B$. (Note it is not essential to assume that A is the standard matrix for T, but the problem is stated as the textbook states it.)

12 Since

$$
A B=\left[\begin{array}{rr}
23 & 5 k-10 \\
-9 & k+15
\end{array}\right] \quad \text { and } \quad B A=\left[\begin{array}{rr}
23 & 15 \\
6-3 k & k+15
\end{array}\right],
$$

we have $A B=B A$ only if $5 k-10=15$ and $6-3 k=-9$. Both equations are satisfied if and only if $k=5$.

