Math 260 Exam \#3 Key (Summer 2021)

1a A is a triangular matrix, and so the eigenvalues are immediately seen to be $-3,0,4$.

1b We find a basis for $E_{A}(4)$, the eigenspace of A corresponding to the largest eigenvalue 4 . We have

$$
E_{A}(4)=\{\mathbf{x}: A \mathbf{x}=4 \mathbf{x}\}=\{\mathbf{x}:(A-4 I) \mathbf{x}=\mathbf{0}\}
$$

so the job is simply to solve the system $(A-4 I) \mathbf{x}=\mathbf{0}$ to get $\operatorname{Span}\left\{\left[\begin{array}{lll}7 & 0 & 1\end{array}\right]^{\top}\right\}$, and so $\left\{\left[\begin{array}{lll}7 & 0 & 1\end{array}\right]^{\top}\right\}$ is a basis.

2 We have $A^{2}=O$. Suppose $A \mathbf{x}=\lambda \mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$. Then

$$
\mathbf{0}=O \mathbf{x}=A^{2} \mathbf{x}=A(A \mathbf{x})=A(\lambda \mathbf{x})=\lambda(A \mathbf{x})=\lambda(\lambda \mathbf{x})=\lambda^{2} \mathbf{x}
$$

which implies $\lambda^{2}=0$, and hence $\lambda=0$. Therefore we conclude that 0 is the only eigenvalue of A.

3 The characteristic equation $\operatorname{det}(A-\lambda I)=0$ becomes $(\lambda-2)(\lambda-1)=12$, which has solutions $-2,5$. Since

$$
E_{A}(-2)=\{\mathbf{x}: A \mathbf{x}=-2 \mathbf{x}\}=\{\mathbf{x}:(A+2 I) \mathbf{x}=\mathbf{0}\}=\operatorname{Span}\left\{\left[\begin{array}{r}
-3 \\
4
\end{array}\right]\right\}
$$

and

$$
E_{A}(5)=\{\mathbf{x}: A \mathbf{x}=5 \mathbf{x}\}=\{\mathbf{x}:(A-5 I) \mathbf{x}=\mathbf{0}\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

we let

$$
D=\left[\begin{array}{rr}
-2 & 0 \\
0 & 5
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{rr}
-3 & 1 \\
4 & 1
\end{array}\right]
$$

4 For $T(\mathbf{x})=A \mathbf{x}$ we find $[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}\right]$, where

$$
\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

with $x_{1}, x_{2}, y_{1}, y_{2}$ such that $x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}=T\left(\mathbf{b}_{1}\right)=A \mathbf{b}_{1}$ and $y_{1} \mathbf{b}_{1}+y_{2} \mathbf{b}_{2}=T\left(\mathbf{b}_{2}\right)=A \mathbf{b}_{2}$. These are two systems of equations having the same coefficient matrix, and we solve both simultaneously:

$$
\left[\begin{array}{rr|rr}
3 & -1 & 5 & 5 \\
2 & 1 & 0 & 5
\end{array}\right] \sim\left[\begin{array}{rr|rr}
2 & 1 & 0 & 5 \\
3 & -1 & 5 & 5
\end{array}\right] \sim\left[\begin{array}{ll|rr}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

From this we obtain

$$
[T]_{\mathcal{B}}=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

$5 \mathbf{v} /\|\mathbf{v}\|=\frac{\mathbf{v}}{\sqrt{61}}=\left[\begin{array}{r}-6 / \sqrt{61} \\ 4 / \sqrt{61} \\ -3 / \sqrt{61}\end{array}\right]$.
$6 \mathrm{x}=\sum_{k=1}^{3}\left(\frac{\mathbf{x} \cdot \mathbf{u}_{k}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k}=\frac{5}{2} \mathbf{u}_{1}-\frac{3}{2} \mathbf{u}_{2}+2 \mathbf{u}_{3}$.
7 By a theorem we have $U^{\top} U=I$, and so, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,

$$
(U \mathbf{x}) \cdot(U \mathbf{y})=(U \mathbf{x})^{\top}(U \mathbf{y})=\mathbf{x}^{\top} U^{\top} U \mathbf{y}=\mathbf{x}^{\top} I \mathbf{y}=\mathbf{x}^{\top} \mathbf{y}=\mathbf{x} \cdot \mathbf{y} .
$$

8 Let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. The best approximation is

$$
\hat{\mathbf{x}}=\operatorname{proj}_{W} \mathbf{x}=\sum_{k=1}^{2}\left(\frac{\mathbf{x} \cdot \mathbf{u}_{k}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k}=\frac{1}{14}\left[\begin{array}{r}
2 \\
0 \\
-1 \\
3
\end{array}\right]+\frac{4}{49}\left[\begin{array}{r}
5 \\
-2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
27 / 49 \\
-8 / 49 \\
25 / 98 \\
-5 / 98
\end{array}\right] .
$$

9 Let

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-8 \\
-4 \\
6 \\
-2
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
3 \\
-3 \\
6 \\
6
\end{array}\right] .
$$

Set $\mathbf{w}_{1}=\mathbf{u}_{1}$. By the Gram-Schmidt procedure,

$$
\mathbf{w}_{2}=\mathbf{u}_{2}-\left(\frac{\mathbf{u}_{2} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
3 \\
1
\end{array}\right],
$$

and

$$
\mathbf{w}_{3}=\mathbf{u}_{3}-\left(\frac{\mathbf{u}_{3} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{1}-\left(\frac{\mathbf{u}_{3} \cdot \mathbf{w}_{2}}{\mathbf{w}_{2} \cdot \mathbf{w}_{2}}\right) \mathbf{w}_{2}=\left[\begin{array}{r}
-1 \\
-1 \\
-1 \\
3
\end{array}\right] .
$$

Orthogonal basis for $\operatorname{Col} \mathbf{A}$ is $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$.
10 Best approximation is

$$
\hat{p}=\frac{\left\langle r, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle r, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}+\frac{\left\langle r, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2} .
$$

Now,

$$
\left\langle r, p_{0}\right\rangle=r(-3) p_{0}(-3)+r(-1) p_{0}(-1)+r(1) p_{0}(1)+r(3) p_{0}(3)=0,
$$

and similarly $\left\langle r, p_{1}\right\rangle=164,\left\langle r, p_{2}\right\rangle=0,\left\langle p_{1}, p_{1}\right\rangle=20$. Note we don't need $\left\langle p_{2}, p_{2}\right\rangle$. We finally obtain

$$
\hat{p}(t)=\frac{164}{20} p_{1}(t)=\frac{41}{5} t .
$$

11 Let $\mathbf{u}_{1}=3, \mathbf{u}_{2}=2 t, \mathbf{u}_{3}=t^{2}$. Set $\mathbf{w}_{1}=\mathbf{u}_{1}=3$. By the Gram-Schmidt procedure,

$$
\mathbf{w}_{2}=\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}=2 t-\frac{\int_{-3}^{3} 6 t d t}{\int_{-3}^{3} 9 d t}(3)=2 t
$$

and

$$
\mathbf{w}_{3}=\mathbf{u}_{3}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2}=t^{2}-\frac{\int_{-3}^{3} 3 t^{2} d t}{\int_{-3}^{3} 9 d t}(3)-\frac{\int_{-3}^{3} 2 t^{3} d t}{\int_{-3}^{3} 4 t^{2} d t}(2 t)=t^{2}-3
$$

$\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is an orthogonal basis.

