1 The equation becomes

$$
\left|\begin{array}{cc}
a+1 & b \\
c & d+1
\end{array}\right|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \Rightarrow \quad(a+1)(d+1)-b c=a d-b c+1
$$

which simplifies to $a+d=0$, and therefore the only needed condition is $d=-a$.

2 The system is $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-3 & 0 & 2 \\
0 & 1 & -2
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]
$$

so that $\operatorname{det} A=-8$,

$$
\operatorname{det} A_{1}(\mathbf{b})=\left|\begin{array}{rrr}
3 & 1 & 0 \\
0 & 0 & 2 \\
2 & 1 & -2
\end{array}\right|=-2, \quad \operatorname{det} A_{2}(\mathbf{b})=\left|\begin{array}{rrr}
1 & 3 & 0 \\
-3 & 0 & 2 \\
0 & 2 & -2
\end{array}\right|=-22
$$

and

$$
\operatorname{det} A_{3}(\mathbf{b})=\left|\begin{array}{rrr}
1 & 1 & 3 \\
-3 & 0 & 0 \\
0 & 1 & 2
\end{array}\right|=-3 .
$$

Cramer's Rule then gives $\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{1}{4}, \frac{11}{4}, \frac{3}{8}\right)$.

3 Here we find that

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
3 \\
-1 \\
6
\end{array}\right]\right\}
$$

so W is a subspace of \mathbb{R}^{3} since it is a nonempty subset of \mathbb{R}^{3} that is the span of a set of vectors in \mathbb{R}^{3}. (By Theorem 4.1 the span of any set of vectors in a vector space V is a subspace of V.)

4 Let W denote the set. The zero function on $[a, b]$, which we'll denote here by $\mathbf{0}$, is certainly a continuous real-valued function, and since $\mathbf{0}(a)=0=\mathbf{0}(b)$ it follows that $\mathbf{0} \in W$.

Next, suppose $f, g \in W$, so f and g are continuous and real-valued on $[a, b]$ such that $f(a)=f(b)$ and $g(a)=g(b)$. Adding the two equations gives $f(a)+g(a)=f(b)+g(b)$, and thus $(f+g)(a)=(f+g)(b)$, and since calculus informs us that $f+g$ must also be continuous and real-valued on $[a, b]$, we conclude that $f+g \in W$. Therefore W is closed under vector addition.

Finally, for any $f \in W$ and scalar $c \in \mathbb{R}$ we know that $c f$ must be continuous and realvalued, and since $f(a)=f(b) \Rightarrow c f(a)=c f(b) \Rightarrow(c f)(a)=(c f)(b)$, we conclude that $c f \in W$. Therefore W is closed under scalar multiplication. This shows that W is a subspace of $\mathcal{C}[a, b]$.

5 First, $\mathbf{0}=\mathbf{0}+\mathbf{0}$ for $\mathbf{0} \in H, K$, so that $\mathbf{0} \in H+K$ and $H+K \neq \varnothing$.
Let $\mathbf{x}, \mathbf{y} \in H+K$, so $\mathbf{x}=\mathbf{u}_{1}+\mathbf{v}_{1}$ and $\mathbf{y}=\mathbf{u}_{2}+\mathbf{v}_{2}$ for some $\mathbf{u}_{1}, \mathbf{u}_{2} \in H$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in K$. Now, $\mathbf{u}_{1}+\mathbf{u}_{2} \in H$ and $\mathbf{v}_{1}+\mathbf{v}_{2} \in K$ since H and K are vector spaces, and because $\mathbf{x}+\mathbf{y}=$
$\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$ it follows that $\mathbf{x}+\mathbf{y} \in H+K$ also. Thus $H+K$ is closed under vector addition.

Now let $\mathbf{w} \in H+K$ and $c \in \mathbb{R}$. There exists $\mathbf{u} \in H$ and $\mathbf{v} \in K$ such that $\mathbf{w}=\mathbf{u}+\mathbf{v}$, and since H and K are vector spaces we also have $c \mathbf{u} \in H$ and $c \mathbf{v} \in K$, so that $c \mathbf{w}=c(\mathbf{u}+\mathbf{v})=$ $c \mathbf{u}+c \mathbf{v} \in H+K$. Therefore $H+K$ is closed under scalar multiplication.

6 Let A be the given matrix. By definition $\operatorname{Nul} A=\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}$, so the job is to find a basis for the solution set to the homogeneous system with augmented matrix

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 2 & -8 & 1 & 9 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 0 & 0 & 1 & -3 & 0
\end{array}\right]
$$

We find that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 x_{3}-7 x_{5} \\
4 x_{3}-6 x_{5} \\
x_{3} \\
3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right],
$$

where x_{3} and x_{5} are free, and so a basis for $\operatorname{Nul} A$ is the set

$$
\left\{\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right]\right\}
$$

7 Define the matrix $V=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{5}\right]$, so the space in question is Col V. With a series of row operations get a new matrix B that is in echelon form:

$$
V=\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & -1 & 2 & 3 & -1 \\
1 & 1 & -1 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -7 & 8 \\
0 & 1 & 0 & -3 & 5 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=B
$$

The last two columns of B can each be expressed as linear combinations of the first three columns, so can be discarded. The same relationship must hold for the columns of V, so any basis for $\mathrm{Col} V$ must involve only $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ (i.e. the first three columns of V). But the first three columns of V must be linearly independent since the first three columns of B are. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set that spans $\operatorname{Col} V$, and therefore forms a basis for the space in question.

8 Form the matrix $A=\left[\begin{array}{rr}1 & 2 \\ -2 & 3\end{array}\right]$. Then A is invertible since $\operatorname{det} A=7 \neq 0$ (Theorem 3.4), and then by the Invertible Matrix Theorem the columns of A (i.e. the vectors in \mathcal{B}) form a basis for \mathbb{R}^{2}. As for the change-of-coordinates matrix, by inspection we have $P_{\mathcal{B}}=A$.

9 Let $\mathbf{b}_{1}(t)=1-t^{2}, \mathbf{b}_{2}(t)=t-t^{2}$, and $\mathbf{b}_{3}(t)=2-2 t+t^{2}$. We must find scalars c_{1}, c_{2}, c_{3} such that $c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\mathbf{p}(t)$. Collecting terms, this gives

$$
\left(c_{1}+2 c_{3}\right)+\left(c_{2}-2 c_{3}\right) t+\left(-c_{1}-c_{2}+c_{3}\right) t^{2}=3+t-6 t^{2} .
$$

Matching coefficients, we obtain the system

$$
\left\{\begin{aligned}
-c_{1}-c_{2}+c_{3}= & -6 \\
c_{2}-2 c_{3} & =1 \\
c_{1} & +2 c_{3}=3
\end{aligned}\right.
$$

which has solution $\left(c_{1}, c_{2}, c_{3}\right)=(7,-3,-2)$. Therefore

$$
[\mathbf{p}(t)]_{\mathcal{B}}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
7 \\
-3 \\
-2
\end{array}\right]
$$

10 Polynomial functions are continuous on \mathbb{R}, so each polynomial vector space \mathbb{P}_{n} is a subspace of the vector space $\mathcal{C}(\mathbb{R})$. Thus, if $\mathcal{C}(\mathbb{R})$ were a finite-dimensional vector space, then by Theorem 4.11 the dimension of $\mathcal{C}(\mathbb{R})$ must be greater than or equal to the dimension of each \mathbb{P}_{n}, which is $n+1$. That is, if $\mathcal{C}(\mathbb{R})$ were finite-dimensional, then $\operatorname{dim} \mathcal{C}(\mathbb{R}) \geq n+1$ for each integer $n \geq 0$, and we would conclude that $\operatorname{dim} \mathcal{C}(\mathbb{R})$ has no upper bound, as with the set of integers. This is a contradiction. Therefore $\mathcal{C}(\mathbb{R})$ must be infinite-dimensional.

11 By the Rank Theorem, $\operatorname{rank} A=3$, the number of pivot positions in A (which equals the number of pivots in B). Also by the Rank Theorem,

$$
\operatorname{dim} \operatorname{Nul} A=(\# \text { of columns in } A)-\operatorname{rank} A=6-3=3 .
$$

A basis for $\operatorname{Col} A$ is the set of pivot columns of A, so that

$$
\text { Basis of } \operatorname{Col} A=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1 \\
-3 \\
-2
\end{array}\right],\left[\begin{array}{r}
7 \\
10 \\
1 \\
-5 \\
0
\end{array}\right]\right\} .
$$

A basis for Row A is the set of nonzero rows of B :

$$
\text { Basis of Row } A=\{(1,1,-3,7,9,-9),(0,1,-1,3,4,-3),(0,0,0,1,-1,-2)\} .
$$

Finally we find a basis for $\operatorname{Nul} A$. The system $A \mathbf{x}=\mathbf{0}$ is equivalent to $B \mathbf{x}=\mathbf{0}$, and if we get B in a reduced row-echelon form C, so that

$$
B \sim C=\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 0 & 9 & 2 \\
0 & 1 & -1 & 0 & 7 & 3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

we readily obtain (since $\operatorname{Nul} C=\operatorname{Nul} A$)

$$
\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-9 \\
-7 \\
0 \\
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

with the three vectors in the set being a basis for $\operatorname{Nul} A$.

12 First we get $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]$. To find $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}$ we find scalars x_{1}, x_{2} such that $x_{1} \mathbf{c}_{1}+$ $x_{2} \mathbf{c}_{2}=\mathbf{b}_{1}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
4 & 1 & 8
\end{array}\right]
$$

Solving gives $x_{1}=3$ and $x_{2}=-4$. To find $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}$ we find y_{1}, y_{2} such that $y_{1} \mathbf{c}_{1}+y_{2} \mathbf{c}_{2}=\mathbf{b}_{2}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
4 & 1 & -5
\end{array}\right]
$$

Solving gives $y_{1}=-2$ and $y_{2}=3$. Therefore

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rr}
3 & -2 \\
-4 & 3
\end{array}\right] \quad \text { and } \quad P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right] .
$$

13 Setting $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+2 t\right\}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$, we find without calculation that

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\left[\mathbf{b}_{3}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 1 & 2 \\
-3 & -5 & 0
\end{array}\right] .
$$

