Math 260 Exam \#2 Key (Summer 2020)

1 We have:

$$
\left|\begin{array}{ccc}
a & b & c \\
d+4 g & e+4 h & f+4 i \\
g & h & i
\end{array}\right|=-9 \Rightarrow\left|\begin{array}{ccc}
g & h & i \\
d+4 g & e+4 h & f+4 i \\
a & b & c
\end{array}\right|=9
$$

and hence

$$
\left|\begin{array}{ccc}
-3 g & -3 h & -3 i \\
d+4 g & e+4 h & f+4 i \\
-2 a & -2 b & -2 c
\end{array}\right|=(-3)(-2) 9=54
$$

2 Using the property $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$,

$$
\operatorname{det}\left(\mathbf{A}^{7}\right)=0 \Rightarrow(\operatorname{det} \mathbf{A})^{7}=0 \Rightarrow \operatorname{det} \mathbf{A}=0
$$

and so \mathbf{A} is not invertible by the Invertible Matrix Theorem.

3 The system is $\mathbf{A x}=\mathbf{b}$ with

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
-1 & 0 & 2 \\
3 & 1 & 0
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right] .
$$

Expanding along the 3rd column we have

$$
\operatorname{det} \mathbf{A}=\left|\begin{array}{rr}
-1 & 0 \\
3 & 1
\end{array}\right|-2\left|\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right|=-1-2(1-9)=15
$$

so $\operatorname{det} \mathbf{A} \neq 0$ and by Cramer's Rule

$$
\begin{aligned}
& x_{1}=\frac{1}{\operatorname{det} \mathbf{A}}\left|\begin{array}{lll}
4 & 3 & 1 \\
2 & 0 & 2 \\
2 & 1 & 0
\end{array}\right|=\frac{1}{15}(6)=\frac{2}{5} \\
& x_{2}=\frac{1}{\operatorname{det} \mathbf{A}}\left|\begin{array}{rrr}
1 & 4 & 1 \\
-1 & 2 & 2 \\
3 & 2 & 0
\end{array}\right|=\frac{1}{15}(12)=\frac{4}{5} \\
& x_{3}=\frac{1}{\operatorname{det} \mathbf{A}}\left|\begin{array}{rrr}
1 & 3 & 4 \\
-1 & 0 & 2 \\
3 & 1 & 2
\end{array}\right|=\frac{1}{15}(18)=\frac{6}{5}
\end{aligned}
$$

Therefore the solution to the system is $\left(\frac{2}{5}, \frac{4}{5}, \frac{6}{5}\right)$.

4 Take the absolute value of the determinant

$$
\left|\begin{array}{rrr}
1 & -2 & -1 \\
3 & 0 & 3 \\
0 & 2 & -1
\end{array}\right|=\left|\begin{array}{rrr}
1 & -2 & -1 \\
3 & 0 & 3 \\
1 & 0 & -2
\end{array}\right|=-18
$$

to get a volume of 18 .

5 We find that

$$
W=s\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{r}
3 \\
-1 \\
-7 \\
4
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
3 \\
-1 \\
-7 \\
4
\end{array}\right]\right\}
$$

and so W is a subspace of \mathbb{R}^{4} by virtue of the fact that it equals the span of two vectors in \mathbb{R}^{4}. (See Theorem 1 on p. 196.)

6 Let W denote the set. The zero function on $[a, b]$, which we'll denote here by $\mathbf{0}$, is certainly a continuous real-valued function, and since $\mathbf{0}(a)=0=\mathbf{0}(b)$ it follows that $\mathbf{0} \in W$.

Next, suppose $f, g \in W$, so f and g are continuous and real-valued on $[a, b]$ such that $f(a)=f(b)$ and $g(a)=g(b)$. Adding the two equations gives $f(a)+g(a)=f(b)+g(b)$, and thus $(f+g)(a)=(f+g)(b)$, and since calculus informs us that $f+g$ must also be continuous and real-valued on $[a, b]$, we conclude that $f+g \in W$. Therefore W is closed under vector addition.

Finally, for any $f \in W$ and scalar $c \in \mathbb{R}$ we know that $c f$ must be continuous and realvalued, and since $f(a)=f(b) \Rightarrow c f(a)=c f(b) \Rightarrow(c f)(a)=(c f)(b)$, we conclude that $c f \in W$. Therefore W is closed under scalar multiplication. This shows that W is a subspace of $\mathcal{C}[a, b]$.
$7 W$ lacks the zero vector: letting $r=s=t=0$ gives the falsehood $2=0$ in the equation that defines W. This immediately implies W is not a vector space.

8 Let \mathbf{A} be the given matrix. By definition $\operatorname{Nul} \mathbf{A}=\{\mathbf{x}: \mathbf{A x}=\mathbf{0}\}$, so the job is to find a basis for the solution set to the homogeneous system with augmented matrix

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 2 & -8 & 1 & 9 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrr|r}
1 & 0 & -5 & 1 & 4 & 0 \\
0 & 1 & -4 & 0 & 6 & 0 \\
0 & 0 & 0 & 1 & -3 & 0
\end{array}\right]
$$

We find that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 x_{3}-7 x_{5} \\
4 x_{3}-6 x_{5} \\
x_{3} \\
3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right],
$$

where x_{3} and x_{5} are free, and so a basis for $\operatorname{Nul} \mathbf{A}$ is the set

$$
\left\{\left[\begin{array}{l}
5 \\
4 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-7 \\
-6 \\
0 \\
3 \\
1
\end{array}\right]\right\}
$$

9 Define the matrix $\mathbf{V}=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{5}\right]$, so the space in question is $\mathrm{Col} \mathbf{V}$. With a series of row operations get a new matrix \mathbf{B} that is in echelon form:

$$
\mathbf{V}=\left[\begin{array}{rrrrr}
1 & -2 & 6 & 5 & 0 \\
0 & 1 & -1 & -3 & 3 \\
0 & -1 & 2 & 3 & -1 \\
1 & 1 & -1 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & -7 & 8 \\
0 & 1 & 0 & -3 & 5 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\mathbf{B}
$$

The last two columns of \mathbf{B} can each be expressed as linear combinations of the first three columns, so can be discarded. The same relationship must hold for the columns of \mathbf{V}, so any basis for $\mathrm{Col} \mathbf{V}$ must involve only $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ (i.e. the first three columns of \mathbf{V}). But the first three columns of \mathbf{V} must be linearly independent since the first three columns of \mathbf{B} are. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set that spans $\operatorname{Col} \mathbf{V}$, and therefore forms a basis for the space in question.

10 This one is easy, since the columns of the matrix are given:

$$
P_{\mathcal{B}}=\left[\begin{array}{rrr}
3 & 2 & 8 \\
-1 & 0 & -2 \\
4 & -5 & 7
\end{array}\right] .
$$

11 Let $\mathbf{b}_{1}(t)=1-t^{2}, \mathbf{b}_{2}(t)=t-t^{2}$, and $\mathbf{b}_{3}(t)=2-2 t+t^{2}$. We must find scalars c_{1}, c_{2}, c_{3} such that $c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\mathbf{p}(t)$. Collecting terms, this gives

$$
\left(c_{1}+2 c_{3}\right)+\left(c_{2}-2 c_{3}\right) t+\left(-c_{1}-c_{2}+c_{3}\right) t^{2}=3+t-6 t^{2}
$$

Matching coefficients, we obtain the system

$$
\left\{\begin{array}{rl}
-c_{1}-c_{2}+c_{3} & =-6 \\
c_{2}-2 c_{3} & =1 \\
c_{1} & +2 c_{3}
\end{array}=3\right.
$$

which has solution $\left(c_{1}, c_{2}, c_{3}\right)=(7,-3,-2)$. Therefore

$$
[\mathbf{p}(t)]_{\mathcal{B}}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
7 \\
-3 \\
-2
\end{array}\right]
$$

12 See the discussion on page 230 of the text: since \mathbf{A} is already in echelon form, the dimension of the null space of \mathbf{A} equals the number of nonpivot columns, while the dimension of the column space of \mathbf{A} equals the number of pivot columns. Hence $\operatorname{Nul} \mathbf{A}=3$ and $\operatorname{Col} \mathbf{A}=3$.

Alternatively: for $m \times n$ matrix \mathbf{A} use the Rank Theorem on page 235, which states that

$$
\operatorname{dim} \operatorname{Col} \mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}=n
$$

13 Polynomial functions are continuous on \mathbb{R}, so each polynomial vector space \mathbb{P}_{n} is a subspace of the vector space $\mathcal{C}(\mathbb{R})$. Thus, if $\mathcal{C}(\mathbb{R})$ were a finite-dimensional vector space, then by Theorem

11 on page 229 of the text the dimension of $\mathcal{C}(\mathbb{R})$ must be greater than or equal to the dimension of each \mathbb{P}_{n}, which is $n+1$. That is, if $\mathcal{C}(\mathbb{R})$ were finite-dimensional, then $\operatorname{dim} \mathcal{C}(\mathbb{R}) \geq n+1$ for each integer $n \geq 0$, and we would conclude that $\operatorname{dim} \mathcal{C}(\mathbb{R})$ has no upper bound, as with the set of integers. This is a contradiction. Therefore $\mathcal{C}(\mathbb{R})$ must be infinite-dimensional.

14 Let \mathbf{A} be $m \times n$ with $m>n$ (i.e. a matrix with more rows than columns). Clearly $\operatorname{dim} \operatorname{Col} \mathbf{A} \leq n$ and dim Row $\mathbf{A} \leq m$ must hold, but by the Rank Theorem (p. 235),

$$
\operatorname{rank} \mathbf{A}=\operatorname{dim} \operatorname{Col} \mathbf{A}=\operatorname{dim} \operatorname{Row} \mathbf{A},
$$

so since $n<m$ we conclude that \mathbf{A} can have full rank if and only if $\operatorname{dim} \operatorname{Col} \mathbf{A}=n$. To finish the argument we now just need to prove that $\operatorname{dim} \operatorname{Col} \mathbf{A}=n$ if and only if the columns of \mathbf{A} are linearly independent.

Suppose $\operatorname{dim} \operatorname{Col} \mathbf{A}=n$. Because $\operatorname{Col} \mathbf{A}$ is the span of the n columns of \mathbf{A}, we conclude by the Basis Theorem (p. 229) that the columns of \mathbf{A} are linearly independent.

For the converse, suppose the columns of \mathbf{A} are linearly independent. Then the n columns of \mathbf{A} form a basis for $\operatorname{Col} \mathbf{A}$ by the Basis Theorem, implying $\operatorname{dim} \operatorname{Col} \mathbf{A}=n$.

15 First we get $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]$. To find $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}$ we find scalars x_{1}, x_{2} such that $x_{1} \mathbf{c}_{1}+$ $x_{2} \mathbf{c}_{2}=\mathbf{b}_{1}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
4 & 1 & 8
\end{array}\right]
$$

Solving gives $x_{1}=3$ and $x_{2}=-4$. To find $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}$ we find y_{1}, y_{2} such that $y_{1} \mathbf{c}_{1}+y_{2} \mathbf{c}_{2}=\mathbf{b}_{2}$, which is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
4 & 1 & -5
\end{array}\right]
$$

Solving gives $y_{1}=-2$ and $y_{2}=3$. Therefore

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{rr}
3 & -2 \\
-4 & 3
\end{array}\right] \quad \text { and } \quad P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right] .
$$

