
Math 260 Exam #2 Key (Summer 2020)

1 We have:∣∣∣∣∣∣
a b c

d + 4g e + 4h f + 4i
g h i

∣∣∣∣∣∣ = −9 ⇒

∣∣∣∣∣∣
g h i

d + 4g e + 4h f + 4i
a b c

∣∣∣∣∣∣ = 9,

and hence ∣∣∣∣∣∣
−3g −3h −3i
d + 4g e + 4h f + 4i
−2a −2b −2c

∣∣∣∣∣∣ = (−3)(−2)9 = 54.

2 Using the property det(AB) = det(A) det(B),

det(A7) = 0 ⇒ (detA)7 = 0 ⇒ detA = 0,

and so A is not invertible by the Invertible Matrix Theorem.

3 The system is Ax = b with

A =

 1 3 1
−1 0 2

3 1 0

, x =

x1

x2

x3

, b =

4
2
2

.
Expanding along the 3rd column we have

detA =

∣∣∣∣ −1 0
3 1

∣∣∣∣− 2

∣∣∣∣ 1 3
3 1

∣∣∣∣ = −1− 2(1− 9) = 15,

so detA 6= 0 and by Cramer’s Rule

x1 =
1

detA

∣∣∣∣∣∣
4 3 1
2 0 2
2 1 0

∣∣∣∣∣∣ =
1

15
(6) =

2

5

x2 =
1

detA

∣∣∣∣∣∣
1 4 1
−1 2 2

3 2 0

∣∣∣∣∣∣ =
1

15
(12) =

4

5

x3 =
1

detA

∣∣∣∣∣∣
1 3 4
−1 0 2

3 1 2

∣∣∣∣∣∣ =
1

15
(18) =

6

5

Therefore the solution to the system is
(
2
5
, 4
5
, 6
5

)
.

4 Take the absolute value of the determinant∣∣∣∣∣∣
1 −2 −1
3 0 3
0 2 −1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −2 −1
3 0 3
1 0 −2

∣∣∣∣∣∣ = −18,

to get a volume of 18.
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5 We find that

W = s


1
1
2
0

+ t


3
−1
−7

4

= Span




1
1
2
0

,


3
−1
−7

4


 ,

and so W is a subspace of R4 by virtue of the fact that it equals the span of two vectors in R4.
(See Theorem 1 on p. 196.)

6 Let W denote the set. The zero function on [a, b], which we’ll denote here by 0, is certainly
a continuous real-valued function, and since 0(a) = 0 = 0(b) it follows that 0 ∈ W .

Next, suppose f, g ∈ W , so f and g are continuous and real-valued on [a, b] such that
f(a) = f(b) and g(a) = g(b). Adding the two equations gives f(a) + g(a) = f(b) + g(b), and
thus (f + g)(a) = (f + g)(b), and since calculus informs us that f + g must also be continuous
and real-valued on [a, b], we conclude that f + g ∈ W . Therefore W is closed under vector
addition.

Finally, for any f ∈ W and scalar c ∈ R we know that cf must be continuous and real-
valued, and since f(a) = f(b)⇒ cf(a) = cf(b)⇒ (cf)(a) = (cf)(b), we conclude that cf ∈ W .
Therefore W is closed under scalar multiplication. This shows that W is a subspace of C[a, b].

7 W lacks the zero vector: letting r = s = t = 0 gives the falsehood 2 = 0 in the equation
that defines W . This immediately implies W is not a vector space.

8 Let A be the given matrix. By definition NulA = {x : Ax = 0}, so the job is to find a
basis for the solution set to the homogeneous system with augmented matrix1 0 −5 1 4 0

0 1 −4 0 6 0
0 2 −8 1 9 0

 ∼
1 0 −5 1 4 0

0 1 −4 0 6 0
0 0 0 1 −3 0


We find that 

x1

x2

x3

x4

x5

=


5x3 − 7x5

4x3 − 6x5

x3

3x5

x5

= x3


5
4
1
0
0

+ x5


−7
−6

0
3
1

,
where x3 and x5 are free, and so a basis for NulA is the set


5
4
1
0
0

,

−7
−6

0
3
1


 .
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9 Define the matrix V = [v1 v2 v3 v4 v5], so the space in question is ColV. With a series of
row operations get a new matrix B that is in echelon form:

V =


1 −2 6 5 0
0 1 −1 −3 3
0 −1 2 3 −1
1 1 −1 −4 1

 ∼


1 0 0 −7 8
0 1 0 −3 5
0 0 1 0 2
0 0 0 0 0

 = B.

The last two columns of B can each be expressed as linear combinations of the first three
columns, so can be discarded. The same relationship must hold for the columns of V, so any
basis for ColV must involve only v1, v2, v3 (i.e. the first three columns of V). But the first
three columns of V must be linearly independent since the first three columns of B are. Thus
{v1,v2,v3} is a linearly independent set that spans ColV, and therefore forms a basis for the
space in question.

10 This one is easy, since the columns of the matrix are given:

PB =

 3 2 8
−1 0 −2

4 −5 7

.
11 Let b1(t) = 1− t2, b2(t) = t− t2, and b3(t) = 2− 2t + t2. We must find scalars c1, c2, c3
such that c1b1 + c2b2 + c3b3 = p(t). Collecting terms, this gives

(c1 + 2c3) + (c2 − 2c3)t + (−c1 − c2 + c3)t
2 = 3 + t− 6t2.

Matching coefficients, we obtain the system{−c1 − c2 + c3 =−6
c2 − 2c3 = 1

c1 + 2c3 = 3

which has solution (c1, c2, c3) = (7,−3,−2). Therefore

[p(t)]B =

c1c2
c3

=

 7
−3
−2

.
12 See the discussion on page 230 of the text: since A is already in echelon form, the
dimension of the null space of A equals the number of nonpivot columns, while the dimension
of the column space of A equals the number of pivot columns. Hence NulA = 3 and ColA = 3.

Alternatively: for m× n matrix A use the Rank Theorem on page 235, which states that

dim ColA + dim NulA = n.

13 Polynomial functions are continuous on R, so each polynomial vector space Pn is a subspace
of the vector space C(R). Thus, if C(R) were a finite-dimensional vector space, then by Theorem
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11 on page 229 of the text the dimension of C(R) must be greater than or equal to the dimension
of each Pn, which is n + 1. That is, if C(R) were finite-dimensional, then dim C(R) ≥ n + 1 for
each integer n ≥ 0, and we would conclude that dim C(R) has no upper bound, as with the set
of integers. This is a contradiction. Therefore C(R) must be infinite-dimensional.

14 Let A be m × n with m > n (i.e. a matrix with more rows than columns). Clearly
dim ColA ≤ n and dim RowA ≤ m must hold, but by the Rank Theorem (p. 235),

rankA = dim ColA = dim RowA,

so since n < m we conclude that A can have full rank if and only if dim ColA = n. To finish
the argument we now just need to prove that dim ColA = n if and only if the columns of A
are linearly independent.

Suppose dim ColA = n. Because ColA is the span of the n columns of A, we conclude by
the Basis Theorem (p. 229) that the columns of A are linearly independent.

For the converse, suppose the columns of A are linearly independent. Then the n columns
of A form a basis for ColA by the Basis Theorem, implying dim ColA = n.

15 First we get PC←B =
[

[b1]C [b2]C
]
. To find [b1]C we find scalars x1, x2 such that x1c1 +

x2c2 = b1, which is a system with augmented matrix[
1 1 −1
4 1 8

]
.

Solving gives x1 = 3 and x2 = −4. To find [b2]C we find y1, y2 such that y1c1 + y2c2 = b2,
which is a system with augmented matrix[

1 1 1
4 1 −5

]
.

Solving gives y1 = −2 and y2 = 3. Therefore

PC←B =
[

[b1]C [b2]C
]

=

[
3 −2
−4 3

]
and PB←C = P−1C←B =

[
3 2
4 3

]
.


