13 times row 1 added to row 2 gives

$$
\left[\begin{array}{rrr}
2 & -3 & h \\
0 & 0 & 5+3 h
\end{array}\right]
$$

and so the system is consistent if and only if $5+3 h=0$, or $h=-\frac{5}{3}$.

2 Solution set may be written in vector notation as

$$
\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x=\frac{2}{3} y-\frac{4}{3}, z=-2 y-3, y \text { is free }\right\}=\left\{\left.\left[\begin{array}{c}
2 / 3 \\
1 \\
-2
\end{array}\right] y+\left[\begin{array}{c}
-4 / 3 \\
0 \\
-3
\end{array}\right] \right\rvert\, y \text { is free }\right\}
$$

though other forms are possible.

3 The problem is to find $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$, where $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the columns of \mathbf{A}. This is a system of linear equations having augmented matrix

$$
\left[\begin{array}{rrr|r}
1 & -2 & -6 & 11 \\
0 & 3 & 7 & -5 \\
1 & -2 & 5 & 9
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & -2 & -6 & 11 \\
0 & 3 & 7 & -5 \\
0 & 0 & 11 & -2
\end{array}\right]
$$

We find a solution: $x_{1}=\frac{245}{33}, x_{2}=-\frac{41}{33}, x_{3}=-\frac{2}{11}$. Therefore \mathbf{b} is indeed a linear combination of the columns of \mathbf{A}.

4 This is a matter of finding all values of h such that there exist $x_{1}, x_{2} \in \mathbb{R}$ for which $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=\mathbf{y}$. This is a system with augmented matrix

$$
\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
-2 & 8 & -3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
0 & 2 & 2 h-3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -3 & h \\
0 & 1 & -5 \\
0 & 0 & 2 h+7
\end{array}\right]
$$

The system is only consistent if $2 h+7=0$, or $h=-\frac{7}{2}$.

5 Augmented matrix is

$$
\left[\begin{array}{rrr|r}
1 & 2 & 1 & 0 \\
-3 & -1 & 2 & 1 \\
0 & 5 & 3 & -1
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 2 & 1 & 0 \\
0 & 5 & 5 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Solution is $(x, y, z)=\left(\frac{3}{5},-\frac{4}{5}, 1\right)$.

6 Throughout, let \mathbf{c} denote a solution to $\mathbf{A x}=\mathbf{b}$, which exists by hypothesis.
Suppose $\mathbf{A x}=\mathbf{0}$ has a nontrivial solution $\boldsymbol{\xi}$, so $\mathbf{A} \boldsymbol{\xi}=\mathbf{0}$ for $\boldsymbol{\xi} \neq \mathbf{0}$. Now, $\boldsymbol{\xi}+\mathbf{c} \neq \mathbf{c}$, and yet

$$
\mathbf{A}(\boldsymbol{\xi}+\mathbf{c})=\mathbf{A} \boldsymbol{\xi}+\mathbf{A c}=\mathbf{0}+\mathbf{b}=\mathbf{b}
$$

which shows that $\mathbf{A x}=\mathbf{b}$ has solutions \mathbf{c} and $\boldsymbol{\xi}$; that is, any solution to $\mathbf{A x}=\mathbf{b}$ is not unique.

Conversely, suppose the solution to $\mathbf{A x}=\mathbf{b}$ is not unique, which is to say in addition to \mathbf{c} there is another solution $\boldsymbol{\xi} \neq \mathbf{c}$. It follows that $\boldsymbol{\xi}-\mathbf{c} \neq \mathbf{0}$, and yet

$$
\mathbf{A}(\boldsymbol{\xi}-\mathbf{c})=\mathbf{A} \boldsymbol{\xi}-\mathbf{A} \mathbf{c}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

which shows that $\mathbf{A x}=\mathbf{0}$ does not only have the trivial solution.

7 We must find integers x_{1}, \ldots, x_{4} such that

$$
x_{1} \mathrm{Na}_{3} \mathrm{PO}_{4}+x_{2} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow x_{3} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+x_{4} \mathrm{NaNO}_{3} .
$$

is a balanced equation. Listing in the order $\mathrm{Na}, \mathrm{P}, \mathrm{O}, \mathrm{Ba}, \mathrm{N}$, we need

$$
x_{1}\left[\begin{array}{l}
3 \\
1 \\
4 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
6 \\
1 \\
2
\end{array}\right]=x_{3}\left[\begin{array}{l}
0 \\
2 \\
8 \\
3 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
0 \\
3 \\
0 \\
1
\end{array}\right] .
$$

Collecting all terms on the left side of the equation yields a system with augmented matrix

$$
\left[\begin{array}{rrrr|r}
3 & 0 & 0 & -1 & 0 \\
1 & 0 & -2 & 0 & 0 \\
4 & 6 & -8 & -3 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 2 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr|r}
1 & 0 & -2 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 6 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We find that $x_{1}=2 x_{3}, x_{2}=3 x_{3}, x_{4}=6 x_{3}$, with x_{3} free. Letting $x_{3}=1$ then gives $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,3,1,6)$.

8 This is disproven with the counterexample

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

9 We have

$$
T((-1,-1)+(1,1))=T(0,0)=(0,0)
$$

and

$$
T(-1,-1)+T(1,1)=(-2,3)+(2,3)=(0,6)
$$

so $T((-1,-1)+(1,1)) \neq T(-1,-1)+T(1,1)$.

10a Find $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
\left\{\begin{aligned}
x_{1}-2 x_{2}= & -1 \\
-x_{1}+3 x_{2}= & 4 \\
3 x_{1}-2 x_{2}= & 9
\end{aligned}\right.
$$

Solving gives $\left(x_{1}, x_{2}\right)=(5,3)$.

10b Suppose $T(\mathbf{x})=\mathbf{0}$, giving the system

$$
\left\{\begin{aligned}
x_{1}-2 x_{2} & =0 \\
-x_{1}+3 x_{2} & =0 \\
3 x_{1}-2 x_{2} & =0
\end{aligned}\right.
$$

The only solution is $\left(x_{1}, x_{2}\right)=(0,0)$. Thus $T(\mathbf{x})=\mathbf{0}$ if and only if $\mathbf{x}=\mathbf{0}$. Theorem 11 on page 77 of the text then implies that T is one-to-one.

10c The standard matrix \mathbf{A} corresponding to T must be 3×2, so $\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]$ for some $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{3}$. This implies \mathbf{A} cannot have a pivot position in every row. By Theorem 4 on page 37 it follows that the columns of \mathbf{A} cannot span \mathbb{R}^{3}, and so T is not onto by Theorem 12a on page 78 .

11 Find a, b, c, d such that

$$
\left[\begin{array}{rr}
3 & -4 \\
-1 & 8
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

This gives

$$
\left[\begin{array}{rr}
3 a-4 c & 3 b-4 d \\
-a+8 c & -b+8 d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],
$$

yielding the system

$$
\left\{\begin{array}{r}
3 a-4 c=0 \\
3 b-4 d=0 \\
-a+8 c=0 \\
-b+8 d=0
\end{array}\right.
$$

The only solution is $a=b=c=d=0$, so no matrix \mathbf{B} exists with the required properties.

12 Using known properties of matrix arithmetic, since \mathbf{D}^{-1} exists:

$$
\begin{aligned}
(\mathbf{B}-\mathbf{C}) \mathbf{D}=\mathbf{O} & \Rightarrow(\mathbf{B}-\mathbf{C}) \mathbf{D D}^{-1}=\mathbf{O D}^{-1} \Rightarrow(\mathbf{B}-\mathbf{C}) \mathbf{I}=\mathbf{O} \\
& \Rightarrow \mathbf{B}-\mathbf{C}=\mathbf{O} \Rightarrow \mathbf{B}=\mathbf{C}
\end{aligned}
$$

13 We have

$$
T\left(x_{1}, x_{2}\right)=\left[\begin{array}{r}
6 x_{1}-8 x_{2} \\
-5 x_{1}+7 x_{2}
\end{array}\right]=\left[\begin{array}{rr}
6 & -8 \\
-5 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

and so the standard matrix for T is

$$
\mathbf{A}=\left[\begin{array}{rr}
6 & -8 \\
-5 & 7
\end{array}\right]
$$

A theorem informs us that T is invertible if and only if \mathbf{A} is invertible. The inverse of \mathbf{A} indeed exists: omitting the computations, we have

$$
\mathbf{A}^{-1}=\left[\begin{array}{ll}
7 / 2 & 4 \\
5 / 2 & 3
\end{array}\right]
$$

With this we find a formula for T^{-1} :

$$
T^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{7}{2} x_{1}+4 x_{2}, \frac{5}{2} x_{1}+3 x_{2}\right) .
$$

14 Form a 3×3 matrix \mathbf{A} with the given vectors as its columns. By the Invertible Matrix Theorem on page 114, if \mathbf{A} is invertible then the columns of \mathbf{A} (and hence the vectors themselves) form a linearly independent set that spans \mathbb{R}^{3}; that is, the vectors form a basis for \mathbb{R}^{3}. Is A invertible? We can verify that it is by computing it directly. Starting with

$$
\left[\begin{array}{rrr|rrr}
1 & -5 & 7 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
-2 & 2 & -5 & 0 & 0 & 1
\end{array}\right],
$$

transform the matrix \mathbf{A} at left via row operations until the 3×3 identity matrix is obtained:

$$
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 / 4 & 11 / 20 & -7 / 20 \\
0 & 1 & 0 & -1 / 4 & -9 / 20 & -7 / 20 \\
0 & 0 & 1 & 0 & -2 / 5 & -1 / 5
\end{array}\right] .
$$

At right is \mathbf{A}^{-1}, so \mathbf{A} is invertible.

15 The task is to find $x_{1}, x_{2} \in \mathbb{R}$ such that $x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}=\mathbf{x}$. This is a linear system with augmented matrix

$$
\left[\begin{array}{rrr}
-3 & 7 & 11 \\
1 & 5 & 0 \\
-4 & -6 & 7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 5 & 0 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right],
$$

and we find that $x_{1}=-5 / 2$ and $x_{2}=1 / 2$. Therefore

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-5 / 2 \\
1 / 2
\end{array}\right] .
$$

16 By the Rank Theorem,

$$
\operatorname{rank} \mathbf{A}=n-\operatorname{dim} \operatorname{Nul} \mathbf{A}=6-2=4
$$

