
Math 260 Exam #1 Key (Summer 2018)

1a Both ±2u/‖u‖ will work, where 2u/‖u‖ = 2√
90

[3,−1, 4, 8].

1b Find any x and y such that [x, 6, y,−3] · u = 0, where

[x, 6, y,−3] · u = 0 ⇒ 3x+ 4y = 30.

A convenient choice would be x = 10 and y = 0, so that [10, 6, 0,−3] is orthogonal to u.

2a By definition,

projv u =
(u · v
v · v

)
v = −17

6
[−2,−1, 1].

2b Here we go:

projv u =
(v · u
u · u

)
u = −17

54
[5, 5,−2].

2c Let θ be the angle. By definition,

cos θ =
u · v
‖u‖‖v‖

= − 17√
54
√

6
= − 17√

324
.

2d Let θ be the angle between projv u and proju v, and let ϕ be the angle between u and v.
Using properties of the dot product, we find that

cos θ =
projv u · proju v

‖ projv u‖‖ proju v‖
=

(
u·v
v·v

)
v ·
(
v·u
u·u

)
u∥∥(u·v

v·v

)
v
∥∥∥∥(v·u

u·u

)
u
∥∥ =

(
u·v
v·v

)2
(v · u)(

u·v
v·v

)2 ‖v‖‖u‖ =
u · v
‖u‖‖v‖

= cosϕ.

Now, since it is known that θ and ϕ must both be angles in the interval [0, π] where cosine is
one-to-one, we conclude that θ = ϕ.

3 A parametrization of the line segment [p,q] is

x(t) = (1− t)p + tq, t ∈ [0, 1].

The point 1/3 of the way from p to q on [p,q] is

x
(
1
3

)
= 2

3
p + 1

3
q =

[
10
3
, 5
3
,−7

3

]
.

4 x(t) = p + t(q− p) = [1, 0,−1] + t[1, 2,−2] = [1 + t, 2t,−1− 2t] for t ∈ R.

5 Points (x, y, z) that lie on both planes must satisfy the system{
x− 2y + z = 0

2x− 3y + z = 6
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The first equation gives z = 2y − x, which when put into the second equation gives y = x− 6.
Putting this back into z = 2y − x gives z = x− 12. The solution set of the system is{

[x, x− 6, x− 12] : x ∈ R
}
.

Thus a parametric equation for the line of intersection of the two planes is

x(t) = [t, t− 6, t− 12], t ∈ R.

6 Since matrix multiplication is associative,

BAC = B(AC) = B

[
a+ 20

26

]
=

 a+ 98
5a+ 22

a2 + 20a− 26

.

7 We have A3 −A = −I, so that A(A2 − I) = −I, and hence A(−A2 + I) = I. Similarly
(−A2 + I)A = I. This shows that −A2 + I is an inverse for A, and therefore A is invertible.

8a Since A is similar to B there exists invertible T such that B = TAT−1. Now, T−1 is an
invertible matrix such that

T−1BT = T−1(TAT−1)T = (T−1T)A(T−1T) = IAI = A,

and therefore B is similar to A.

8b Suppose A is invertible, which is to say A−1 exists. Now, since TT−1 = T−1T = I and
AA−1 = I,

B(TA−1T−1) = (TAT−1)(TA−1T−1) = TA(T−1T)A−1T−1 = TAA−1T−1 = TT−1 = I,

and similarly (TA−1T−1)B = I. This shows that TA−1T−1 is the inverse for B, and therefore
B is invertible.

If we next suppose that B is invertible, then since B is similar to A by part (a), a symmetrical
argument (i.e. one in which we interchange the roles of A and B in the previous paragraph)
shows that A must be invertible.

9 Performing row operations on 1 0 0 1 0 0
1 1 0 0 1 0
1 1 1 0 0 1


until I3 is obtained on the left side (the chosen series of steps can vary), we find that

C−1 =

 1 0 0
−1 1 0

0 −1 1

.
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10 The corresponding augmented matrix for the system is1 2 2 9
2 4 −3 1
3 6 −5 0

.
We transform this matrix into row-echelon form:1 2 2 9

2 4 −3 1
3 6 −5 0

 −2r1+r2→r2−−−−−−−−→
−3r1+r3→r3

1 2 2 9
0 0 −7 −17
0 0 −11 −27

 r2↔r3−−−−→

1 2 2 9
0 0 −7 −17
0 0 0 −2/7

 .
The third equation now states that 0 = −2/7, which is a contradiction. Therefore the system
has no solution.

11 Adding the equations gives 4x+ 4z = 3, so z = 3
4
− x. Putting this into the 1st equation

yields y = 1
2
− 3x. Ergo the solution set is
xy
z

 : y = 1
2
− 3x & z = 3

4
− x

 or


 t

1/2− 3t
3/4− t

 : t ∈ R

 .

12 If [x, y, z] is a solution, then c[x, y, z] is also a solution since c[x, y, z] = [cx, cy, cz], and
x− 7y + 3z = 0 implies cx− 7(cy) + 3(cz) = 0.

If [x1, y1, z1] and [x2, y2, z2] are solutions, then so too is

[x1, y1, z1] + [x2, y2, z2] = [x1 + x2, y1 + y2, z1 + z2]

since

(x1 + x2)− 7(y1 + y2) + 3(z1 + z2) = (x1 − 7y1 + 3z1) + (x2 − 7y2 + 3z2) = 0 + 0 = 0.

Observing that [0, 0, 0] is a solution (so the solution set is nonempty), we conclude that the
solution set is a subspace of R3.

Now, since x = 7y − 3z, the solution set is
7y − 3z

y
z

 : y, z ∈ R

 =


7

1
0

s+

−3
0
1

t : s, t ∈ R

 ,

and therefore a basis is 
7

1
0

,
−3

0
1

 .

13 (π, 0) is a solution to sin x−2y = 0, but 1
2
(π, 0) = (π/2, 0) is not: sin(π/2)−2(0) = 1 6= 0.

Not closed under scalar multiplication, and so not a subspace.
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14 Since ad− bc 6= 0, either a 6= 0 or c 6= 0. By relabeling the coordinates of our two vectors
if necessary, we can assume a 6= 0. Now, suppose that x1, x2 ∈ R are such that

x1[a, b] + x2[c, d] = [0, 0].

This gives the system {
x1a+ x2c= 0
x1b+ x2d= 0

From the 1st equation comes x1 = −(c/a)x2. Putting this into the 2nd equation gives

−bc
a
x2 + dx2 = 0 ⇒ x2

(
ad− bc

a

)
= 0 ⇒ x2 = 0,

the last equation following from the middle one since ad− bc 6= 0. Now x1 = −(c/a)x2 = 0 as
well, and we conclude that [a, b] and [c, d] are linearly independent.

15 Suppose
x1[1, 2, 0] + x2[1, 3,−1] + x3[−1, 1, 1] = [0, 0, 0].

Then we obtain the system {
x1 + x2 − x3 = 0

2x1 + 3x2 + x3 = 0
−x2 + x3 = 0

The last equation gives x3 = x2, which can be used to go on to find that x1 = x2 = x3 = 0.
Therefore the vectors are linearly independent.


