
Math 260 Exam #3 Key (Summer 2016)

1a Let x = [x, y]> ∈ R2. Completing the square gives
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a sum of squares, which cannot equal zero for x, y ∈ R unless x = y = 0. That is x>Ax = 0 if
and only if x = 0, and therefore A is positive definite.

1b Suppose ac − b2 ≤ 0. Then in particular it is possible that ac − b2 = 0, giving b2 = ac,
and hence c ≥ 0 since a > 0 and b2 cannot be negative. Now,

x>Ax =
[
x y

][a b
b c

][
x
y

]
= ax2 + 2bxy + cy2,

and so if we let x =
[√

c,−
√
a
]>

, then x ∈ R2 is a nonzero vector such that x>Ax = 0, and
we conclude that A is not positive definite. Therefore if A is positive definite, then is must be
that ac− b2 > 0.

For the converse, suppose A is not positive definite. Then there exists some x ∈ R2 such
that x 6= 0 and x>Ax ≤ 0. Now,

x>Ax ≤ 0 ⇒ ax2 + 2bxy + cy2 ≤ 0 ⇒ x2 +
2by

a
x +

c

a
y2 ≤ 0

⇒

[
x2 +

2by

a
x +

(
by

a

)2
]
−
(
by
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)2

+
c

a
y2 ≤ 0

⇒
(
x +

b

a
y

)2

−
(
b2 − ac

a2

)
y2 ≤ 0.

To satisfy the last inequality requires that

b2 − ac

a2
≥ 0,

which in turn requires that b2 − ac ≥ 0, and hence ac− b2 ≤ 0. Therefore if ac− b2 > 0, then
A must be positive definite.

2 Let w1 = 1, u2 = t, and u3 = t2. Then by the Gram-Schmidt procedure,

w2 = u2 −
〈u2,w1〉
〈w1,w1〉

w1 = t−
∫ 1

0
t dt∫ 1

0
1 dt

(1) = t− 1

2
,

and

w3 = u3 −
〈u3,w1〉
〈w1,w1〉

w1 −
〈u3,w2〉
〈w2,w2〉

w2 = t2 −
∫ 1

0
t2 dt∫ 1

0
1 dt

(1)−
∫ 1

0
t2
(
t− 1

2

)
dt∫ 1

0

(
t− 1

2

)2
dt

(
t− 1

2

)
= t2 − t + 1

6
.
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So
{

1, t− 1
2
, t2 − t + 1

6

}
is an orthogonal basis, and it remains to normalize the basis elements.

Let ŵ1 = w1,

ŵ2 =
w2

‖w2‖
=

t− 1
2√∫ 1

0

(
t− 1

2

)2
dt

=
t− 1

2√
1
12

= (2t− 1)
√

3,

and

ŵ3 =
w3

‖w3‖
=

t2 − t + 1
6√∫ 1

0

(
t2 − t + 1

6

)2
dt

=
t2 − t + 1

6√
1

180

= (6t2 − 6t + 1)
√

5,

Then {ŵ1, ŵ2, ŵ3} is an orthonormal basis.

3 Perform the row operations −2r3 + r1 → r1, −2r3 + r4 → r4, and r3 + r2 → r2 to get∣∣∣∣∣∣∣∣
0 2 1 −2
0 1 t + 1 2
−1 0 1 −1

0 2 4 −3

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 1 −2
1 t + 1 2
2 4 −3

∣∣∣∣∣∣ .
Now perform operations −2r2 + r1 → r1, −2r2 + r3 → r3:

−

∣∣∣∣∣∣
0 −2t− 1 −6
1 t + 1 2
0 −2t + 2 −7

∣∣∣∣∣∣ =

∣∣∣∣ −2t− 1 −6
−2t + 2 −7

∣∣∣∣ = 2t + 19.

4 Performing the column operation c3 + c2 → c2 and then expanding along the 3rd row gives

det(A) =

∣∣∣∣∣∣
3 1 −1
1 1 1
0 1 −1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3 0 −1
1 2 1
0 0 −1

∣∣∣∣∣∣ = (−1)

∣∣∣∣ 3 0
1 2

∣∣∣∣ = −6.

Now, with A = [a1 a2 a3], we have

x = det(b a2 a3) =

∣∣∣∣∣∣
0 1 −1
0 1 1
1 1 −1

∣∣∣∣∣∣ = 2, y = det(a1 b a3) =

∣∣∣∣∣∣
3 0 −1
1 0 1
0 1 −1

∣∣∣∣∣∣ = −4,

and

z = det(a1 a2 b) =

∣∣∣∣∣∣
3 1 0
1 1 0
0 1 1

∣∣∣∣∣∣ = 2.

By Cramer’s Rule the solution to the system isxy
z

=

[
det(b a2 a3)

det(A)
,

det(a1 b a3)

det(A)
,

det(a1 a2 b)

det(A)

]>
=

−1/3
2/3
−1/3

.
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5a We have

PB(t) = det(B− tI) =

∣∣∣∣∣∣
1− t −3 3

3 −5− t 3
6 −6 4− t

∣∣∣∣∣∣ = −(t + 2)2(4− t),

and so the characteristic equation for B is (t + 2)2(4− t) = 0.

5b The eigenvalues are the roots to the characteristic equation: −2 and 4.

5c The eigenspace corresponding to −2 is the solution space of the system Bx = −2x, or
equivalently (B + 2I)x = 0, which may be written as3 −3 3

3 −3 3
6 −6 6

x1

x2

x3

=

0
0
0

.
Thus

EB(−2) =

s

 1
0
−1

+ t

0
1
1

 : s, t ∈ R

 ,

which has basis
{

[1, 0,−1]>, [0, 1, 1]>
}

.
The eigenspace corresponding to 4 is the solution space of the system Bx = 4x, or equiva-

lently (B− 4I)x = 0, which may be written as−3 −3 3
3 −9 3
6 −6 0

x1

x2

x3

=

0
0
0

.
Thus

EB(4) =

t

1
1
2

 : t ∈ R

 ,

which has basis
{

[1, 1, 2]>
}

.

6a We have

PM(t) = det(M− tI) =

∣∣∣∣ 7− t −15
2 −4− t

∣∣∣∣ = (t− 1)(t− 2),

and so the eigenvalues of M are 1 and 2.

6b A basis for EM(1) is
{

[5, 2]>
}

, and a basis for EM(2) is
{

[3, 1]>
}

.

6c With the appropriate theorem, we find that

P =

[
5 3
2 1

]
and D =

[
1 0
0 2

]
.
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6d After finding that

P−1 =

[
−1 3

2 −5

]
,

we obtain

M12 = (PDP−1)12 = PD12P−1 =

[
5 3
2 1

][
1 0
0 4096

][
−1 3

2 −5

]
=

[
24,571 −61,425
8,190 −20,474

]
.

6e We have

M1/2 = (PDP−1)1/2 = PD1/2P−1 =

[
5 3
2 1

][
1 0

0
√

2

][
−1 3

2 −5

]
=

[
−5 + 6

√
2 15− 15

√
2

−2 + 2
√

2 6− 5
√

2

]
.


