MATH 260 ExaM #2 KEY (SUMMER 2016)

1 Letx,y€S. Sox'a>candy'a>c Supposez € Xy, s0 z = X + t(y — x) for some
t € [0,1]. Now,
z'c=[x+tly—x)]"a=[x"+tly  —xDa=x"a+t(y'a—x"a)
—(1-t)x'a+ty'a>(1—-t)c+tc=c,

and hence z € S. We conclude that Xy C S, and therefore S is a convex set.

2 Since
0 00 0 00 0 00 000
V=¢|la 0 0]|abjceRjy=Span< |1 0 O0f,|0 0 0],]0 O O] p,
b ¢ 0 0 00 100 010
the set
0 00 0 00 000
B=<|1 0 0(,[0 O 0},[{0 O O
000 100 010
is a basis for V, and therefore dim(V') = 3.
3 Find an equivalent matrix to H that is in row-echelon form
-2 2 3 -4 -1 11 -2 3 1
H —r1+74 1 1 —2 3 1 r1$72 —2 2 3 —4 —1
ro+rs 04 -1 2 1 04 -1 2 1
00 3 0 0 00 3 0 0
11 -2 3 1 11 -2 31
2r1+r2 04 -1 2 1 34374 0 4 -1 2 1
04 -1 2 1 00 30 0}
00 300 00 000

The row-echelon form has three nonzero row vectors, which implies that rank(H) = 3.
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5 Let p € Ker(D?), so D*(p) = 0. Hence D(D(p)) = 0, which indicates that D(p) must be
a constant polynomial, and so D(p) = a for some a € R. Now p = [adz = ax + b for some
arbitrary b € R, and thus p € P;(R). Conversely, if p € P;(R), so that p = ax + b for some

a,b € R, then
D*(p) = D(D(p)) =
showing that p € Ker(D?). Therefore Ker(D?)

In similar fashion we find that Ker(D")
with real coefficients and degree at most n — 1.

z+b)=D(a) =0,
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Pr-1(R), the subspace of all polynomials in z
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6 The only solution the system has is the zero vector in R3, 0 = [0,0,0] ", and so the only basis
for the space of solutions is @ (the empty set). Thus the dimension of the space of solutions is
0, by definition.

7 Let £ = (e, ey, e3,e,) and F = (fi, 5, f3) denote the standard basis for R and R3, respec-
tively. Since

0 1 0 0
L(e1) =|0], L(ex)=|0], L(es)=|0], L(es)=]1],
0 0 0 0

the £ F-matrix for L is

8a Let v € V. Then P(P(v)) = (P o P)(v) = P(v), showing that P(v) € Img(P). Now,
v = (v— P(v))+ P(v), where

P(v—P(v)) = P(v) = P(P(v)) = P(v) = P(v) =0
shows that v — P(v) € Ker(P). Thus v = (v — P(v)) + P(v) € Ker(P) + Img(P), so that
V' C Ker(P) 4 Img(P). The reverse containment is clear, and therefore V' = Ker(P) + Img(P).

8b Suppose v € Ker(P) N Img(P), so P(v) = 0 and there exists some u € V such that
P(u) = v. Now,

v = P(u) = P(P(u)) = P(v) =0,
and thus v € {0}. Since P(0) = 0, it is clear that {0} C Ker(P) N Img(P), and therefore
Ker(P) NImg(P) = {0}.

9 Suppose L(z,y) = [0,0]. Then 2z +y = 0 and 3x — 5y = 0. These two equations form a
system that has only one solution: [z, y] = [0,0]. Thus Ker(L) = {[0, 0]}, which implies that L
is injective, and hence L is bijective (one-to-one and onto) since it is a linear operator on R'*2,
A bijective function always has an inverse function, and therefore L is invertible.

10 Writing ] = —L —2L = Lo (—L —2[)and [ = (—L —2[)o L, and so —L — 21 is the
inverse function for L. Therefore L is invertible.
Another way: suppose v € Ker(L), so that L(v) = 0. Then, since L(0) = 0, we have

0=0)=(L*+2L+1I)(v) = L(L(v)) + 2L(v) + I(v) = L(0) + 20 + v = V.
Thus v = 0, showing that Ker(L) = {0}, and therefore L is invertible.



