
Math 260 Exam #2 Key (Summer 2016)

1 Let x,y ∈ S. So x>a ≥ c and y>a ≥ c. Suppose z ∈ xy, so z = x + t(y − x) for some
t ∈ [0, 1]. Now,

z>c = [x + t(y − x)]>a = [x> + t(y> − x>)]a = x>a + t(y>a− x>a)

= (1− t)x>a + ty>a ≥ (1− t)c + tc = c,

and hence z ∈ S. We conclude that xy ⊆ S, and therefore S is a convex set.

2 Since

V =


0 0 0
a 0 0
b c 0

∣∣∣∣∣∣ a, b, c ∈ R

= Span


0 0 0

1 0 0
0 0 0

,
0 0 0

0 0 0
1 0 0

,
0 0 0

0 0 0
0 1 0

,

the set

B =


0 0 0

1 0 0
0 0 0

,
0 0 0

0 0 0
1 0 0

,
0 0 0

0 0 0
0 1 0


is a basis for V , and therefore dim(V ) = 3.

3 Find an equivalent matrix to H that is in row-echelon form:

H
−r1+r4−−−−−→
r2+r3


−2 2 3 −4 −1

1 1 −2 3 1
0 4 −1 2 1
0 0 3 0 0

 r1↔r2−−−−→


1 1 −2 3 1
−2 2 3 −4 −1

0 4 −1 2 1
0 0 3 0 0


2r1+r2−−−−→


1 1 −2 3 1
0 4 −1 2 1
0 4 −1 2 1
0 0 3 0 0

 r3↔r4−−−−→


1 1 −2 3 1
0 4 −1 2 1
0 0 3 0 0
0 0 0 0 0

.
The row-echelon form has three nonzero row vectors, which implies that rank(H) = 3.

4 Behold, for T be nonlinear:

T

([
2
0

]
+

[
0
2

])
= T

([
2
2

])
=

[
4
2

]
6=
[

0
2

]
=

[
0
2

]
+

[
0
0

]
= T

([
2
0

])
+ T

([
0
2

])
.

5 Let p ∈ Ker(D2), so D2(p) = 0. Hence D(D(p)) = 0, which indicates that D(p) must be
a constant polynomial, and so D(p) = a for some a ∈ R. Now p =

∫
a dx = ax + b for some

arbitrary b ∈ R, and thus p ∈ P1(R). Conversely, if p ∈ P1(R), so that p = ax + b for some
a, b ∈ R, then

D2(p) = D(D(p)) = D(ax + b) = D(a) = 0,

showing that p ∈ Ker(D2). Therefore Ker(D2) = P1(R).
In similar fashion we find that Ker(Dn) = Pn−1(R), the subspace of all polynomials in x

with real coefficients and degree at most n− 1.



2

6 The only solution the system has is the zero vector in R3, 0 = [0, 0, 0]>, and so the only basis
for the space of solutions is ∅ (the empty set). Thus the dimension of the space of solutions is
0, by definition.

7 Let E = (e1, e2, e3, e4) and F = (f1, f2, f3) denote the standard basis for R4 and R3, respec-
tively. Since

L(e1) =

0
0
0

, L(e2) =

1
0
0

, L(e3) =

0
0
0

, L(e4) =

0
1
0

,
the EF -matrix for L is

[L]EF =
[
[e1]E [e2]E [e3]E [e4]E

]
=

0 1 0 0
0 0 0 1
0 0 0 0



8a Let v ∈ V . Then P (P (v)) = (P ◦ P )(v) = P (v), showing that P (v) ∈ Img(P ). Now,
v = (v − P (v)) + P (v), where

P (v − P (v)) = P (v)− P (P (v)) = P (v)− P (v) = 0

shows that v − P (v) ∈ Ker(P ). Thus v = (v − P (v)) + P (v) ∈ Ker(P ) + Img(P ), so that
V ⊆ Ker(P ) + Img(P ). The reverse containment is clear, and therefore V = Ker(P ) + Img(P ).

8b Suppose v ∈ Ker(P ) ∩ Img(P ), so P (v) = 0 and there exists some u ∈ V such that
P (u) = v. Now,

v = P (u) = P (P (u)) = P (v) = 0,

and thus v ∈ {0}. Since P (0) = 0, it is clear that {0} ⊆ Ker(P ) ∩ Img(P ), and therefore
Ker(P ) ∩ Img(P ) = {0}.

9 Suppose L(x, y) = [0, 0]. Then 2x + y = 0 and 3x − 5y = 0. These two equations form a
system that has only one solution: [x, y] = [0, 0]. Thus Ker(L) = {[0, 0]}, which implies that L
is injective, and hence L is bijective (one-to-one and onto) since it is a linear operator on R1×2.
A bijective function always has an inverse function, and therefore L is invertible.

10 Writing I = −L − 2L = L ◦ (−L − 2I) and I = (−L − 2I) ◦ L, and so −L − 2I is the
inverse function for L. Therefore L is invertible.

Another way: suppose v ∈ Ker(L), so that L(v) = 0. Then, since L(0) = 0, we have

0 = O(v) = (L2 + 2L + I)(v) = L(L(v)) + 2L(v) + I(v) = L(0) + 20 + v = v.

Thus v = 0, showing that Ker(L) = {0}, and therefore L is invertible.


