MATH 260 EXAM #1 KEY (SUMMER 2016)

1a
$$\|\mathbf{u}\| = \sqrt{2^2 + (-1)^2 + 4^2} = \sqrt{21}$$
 and $\|\mathbf{v}\| = \sqrt{(-3)^2 + 1^2 + 2^2} = \sqrt{14}$.

1b Since
$$\mathbf{u} \cdot \mathbf{v} = (2)(-3) + (-1)(1) + (4)(2) = 1$$
 and $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 = (\sqrt{14})^2 = 14$, we have $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} = \frac{1}{14}[-3, 1, 2] = \left[-\frac{3}{14}, \frac{1}{14}, \frac{1}{7}\right]$.

1c We have

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{1}{\sqrt{21}\sqrt{14}} = \frac{1}{7\sqrt{6}} \quad \Rightarrow \quad \theta = \cos^{-1}\left(\frac{1}{7\sqrt{6}}\right) \approx 86.66^{\circ}.$$

2 There's just one right answer:

$$\mathbf{x}(t) = \mathbf{p} + t(\mathbf{q} - \mathbf{p}) = [2, -6, 9] + t[-2, 14, -8] = [2 - 2t, -6 + 14t, 9 - 8t].$$

3 Let $\mathbf{p}_0 = [0, 1, 2]$, $\mathbf{p}_1 = [2, 3, 4]$, and $\mathbf{p}_2 = [4, 5, 6]$. We find a vector $\mathbf{n} = [a, b, c]$ such that $\mathbf{n} \perp (\mathbf{p}_1 - \mathbf{p}_0)$ and $\mathbf{n} \perp (\mathbf{p}_2 - \mathbf{p}_0)$; that is,

$$\mathbf{n} \cdot (\mathbf{p}_1 - \mathbf{p}_0) = 0$$
 and $\mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_0) = 0$,

giving the system

$$\begin{cases} 2a + 2b + 2c = 0 \\ 4a + 4b + 4c = 0 \end{cases}$$

One solution is $\mathbf{n}=[a,b,c]=[1,-1,0]$ (there are others). An equation for the plane is $(\mathbf{x}-\mathbf{p}_0)\cdot\mathbf{n}=0$, or

$$[x, y - 1, z - 2] \cdot [1, -1, 0] = 0,$$

which becomes x - y = -1.

4 Two points determine the line, and they can be found as solutions to the system

$$\begin{cases} x - y + z = 3 \\ 2x - 3y - z = 1 \end{cases}$$

The first equation gives z=3-x+y, which when put into the second equation gives $y=\frac{3}{4}x-1$. Putting this back into z=3-x+y gives $z=-\frac{1}{4}x+2$. The solution set of the system is

$$S = \{ [x, \frac{3}{4}x - 1, -\frac{1}{4}x + 2] : x \in \mathbb{R} \}.$$

Replacing x with 4t simplifies things a little:

$$S = \{ [4t, 3t - 1, -t + 2] : t \in \mathbb{R} \} = \{ [0, -1, 2] + t[4, 3, -1] : t \in \mathbb{R} \}.$$

Thus

$$\mathbf{x}(t) = [0, -1, 2] + t[4, 3, -1]$$

is a parametric equation for the line of intersection of the two planes.

5 We have

$$\begin{bmatrix} -19 & 41 & 30 \\ -1 & 4 & 6 \\ 15 & -45 & -54 \end{bmatrix}$$

6a We wish to determine a, b, c, and d so that

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & d^2 + bc \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -\mathbf{I}.$$

If we let a = 0 and d = 0, then we find we must have b and c such that

$$\begin{bmatrix} bc & 0 \\ 0 & bc \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},$$

which is to say bc = -1. Thus we may set b = 1 and c = -1 to obtain

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Another possibility is to let b = c = 0 and a = d = i, where $i = \sqrt{-1}$, giving

$$\mathbf{A} = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}.$$

There are infinitely many other options.

6b Find a, b, c, and d such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & d^2 + bc \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

or

$$a^{2} + bc = 0$$
, $ab + bd = 0$, $ac + cd = 0$, $d^{2} + bc = 0$.

The first and last equations require $a^2 = d^2 = -bc$, and so we must have $d = \pm a$. The second equation,

$$b(a+d) = 0,$$

requires b = 0 or d = -a. The third equation,

$$c(a+d) = 0.$$

requires c = 0 or d = -a.

Consider what happens if d = -a for $a \neq 0$. Then $b, c \neq 0$, and we must have $c = -a^2/b$ to yield a matrix of the form

$$\begin{bmatrix} a & b \\ -a^2/b & -a \end{bmatrix}. \tag{1}$$

If d = a for $a \neq 0$, then we must have b = c = 0 to satisfy the 2nd and 3rd equations; however, from the first and fourth equations we obtain $a^2 = d^2 = -bc = 0$, which requires a = 0 after all! This is an impossible case.

If d = a = 0, then $-bc = a^2 = 0$ results, and so we must have either b = 0 or c = 0, giving a matrix of the form

$$\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}.$$

The first of these matrices may be obtained from (1) by setting a=0 and so is not a new form. The second matrix is new. Therefore a 2×2 matrix **A** for which $\mathbf{A}^2 = \mathbf{O}$ must have one of these two forms:

$$\begin{bmatrix} a & b \\ -a^2/b & -a \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}.$$

7 Call the matrix A. Then,

$$\mathbf{A} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 2 & 1 & -4 & 3 \\ 0 & 1 & 3 & -2 \\ 2 & 3 & 2 & -1 \end{bmatrix} \xrightarrow{-r_1 + r_3 \to r_3} \begin{bmatrix} 2 & 1 & -4 & 3 \\ 0 & 1 & 3 & -2 \\ 0 & 2 & 6 & -4 \end{bmatrix} \xrightarrow{-2r_2 + r_3 \to r_3} \begin{bmatrix} 2 & 1 & -4 & 3 \\ 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

8 Performing row operations on

$$\begin{bmatrix}
0 & 3 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
2 & 4 & 3 & 0 & 0 & 1
\end{bmatrix}$$

until I_3 is obtained on the left side, we find that

$$\mathbf{C}^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{3}{2} & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \end{bmatrix}$$

9 The corresponding augmented matrix for the system is

$$\begin{bmatrix} 1 & 2 & -1 & 9 \\ 2 & 0 & -1 & -2 \\ 3 & 5 & 2 & 22 \end{bmatrix}.$$

We transform this matrix into row-echelon form:

$$\begin{bmatrix}
1 & 2 & -1 & | & 9 \\
2 & 0 & -1 & | & -2 \\
3 & 5 & 2 & | & 22
\end{bmatrix}
\xrightarrow{-2r_1+r_2\to r_2}
\xrightarrow{-3r_1+r_3\to r_3}
\begin{bmatrix}
1 & 2 & -1 & | & 9 \\
0 & -4 & 1 & | & -20 \\
0 & -1 & 5 & | & -5
\end{bmatrix}
\xrightarrow{r_2\leftrightarrow r_3}
\begin{bmatrix}
1 & 2 & -1 & | & 9 \\
0 & -1 & 5 & | & -5 \\
0 & 0 & -1 & 5 & | & -5 \\
0 & 0 & -19 & | & 0
\end{bmatrix}.$$

We have obtained the equivalent system of equations

$$\begin{cases} x + 2y - z = 9 \\ -y + 5z = -5 \\ -19z = 0 \end{cases}$$

From the third equation we have z = 0, which when put into the second equation yields -y = -5, or y = 5. Finally, from the first equation we obtain.

$$x + 2(5) - 0 = 9 \implies x = -1.$$

Therefore the sole solution to the system is (-1, 5, 0).

10 From 2nd equation: x = 2z - y - 1. Put this into 1st equation:

$$3(2z - y - 1) - 5y + 6z = 4 \implies y = \frac{3}{2}z - \frac{7}{8}$$
.

Now x = 2z - y - 1 gives

$$x = 2z - \left(\frac{3}{2}z - \frac{7}{8}\right) - 1 = \frac{1}{2}z - \frac{1}{8}.$$

Solution set is therefore

$$\left\{ \begin{bmatrix} \frac{1}{2}z - \frac{1}{8} \\ \frac{3}{2}z - \frac{7}{8} \\ z \end{bmatrix} : z \in \mathbb{R} \right\}.$$

11 Note that $[1,1,1] \in S$, and yet $[-1,-1,-1] \notin S$. So not every element of S has an additive inverse, violating Axiom VS4.

12 Let $\mathbf{x}_1 = [x_1, y_1]$ and $\mathbf{x}_2 = [x_2, y_2]$ be elements of S, so $4y_1 - 3x_1 = 0$ and $4y_2 - 3x_2 = 0$. Now,

$$4(y_1 + y_2) - 3(x_1 + x_2) = (4y_1 - 3x_1) + (4y_2 - 3x_2) = 0,$$

which shows that $\mathbf{x}_1 + \mathbf{x}_2 = [x_1 + x_2, y_1 + y_2] \in S$. Also

$$4(cy_1) - 3(cx_1) = c(4y_1 - 3x_1) = (c)(0) = 0$$

shows that $c\mathbf{x}_1 \in S$. Since the closure properties are satisfied and $S \neq \emptyset$ (since $\mathbf{0} \in S$), we conclude that S is a subspace of \mathbb{R}^2 .

13 Suppose $\mathbf{x}, \mathbf{y} \in U \cap V$ and c is a scalar. Since $\mathbf{x}, \mathbf{y} \in U$ and U is a subspace, we have $c\mathbf{x} \in U$ and $\mathbf{x} + \mathbf{y} \in U$. Since $\mathbf{x}, \mathbf{y} \in V$ and V is a subspace, we have $c\mathbf{x} \in V$ and $\mathbf{x} + \mathbf{y} \in V$. Therefore $c\mathbf{x} \in U \cap V$ and $\mathbf{x} + \mathbf{y} \in U \cap V$. We have now shown that $U \cap V$ is closed under scalar multiplication and vector addition, and therefore $U \cap V$ is a subspace.

14 Suppose that $\mathbf{x}, \mathbf{y} \in U^{\perp}$, so that $\mathbf{x} \cdot \mathbf{u} = 0$ and $\mathbf{y} \cdot \mathbf{u} = 0$ for all $\mathbf{u} \in U$. Since for all $\mathbf{u} \in U$ we have

$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{u} = \mathbf{x} \cdot \mathbf{u} + \mathbf{y} \cdot \mathbf{u} = 0 + 0 = 0,$$

it follows that $\mathbf{x} + \mathbf{y} \in U^{\perp}$.

Now suppose that $\mathbf{x} \in U^{\perp}$ and $c \in \mathbb{R}$. Then for any $\mathbf{u} \in U$ we have

$$(c\mathbf{x}) \cdot \mathbf{u} = c(\mathbf{x} \cdot \mathbf{u}) = c(0) = 0,$$

which implies that $c\mathbf{x} \in U^{\perp}$.

So, $U^{\perp} \neq \emptyset$ since $\mathbf{0} \in U^{\perp}$, and since U^{\perp} is closed under scalar multiplication and vector addition it is a subspace of \mathbb{R}^n .

15 Let $\mathbf{x}_1 = [1, 2, 6]$, $\mathbf{x}_2 = [1, 5, -1]$, and $\mathbf{x}_3 = [0, 3, 1]$. Suppose $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 = \mathbf{0}$. This gives the system of equations

$$\begin{cases} c_1 + c_2 = 0 \\ 2c_1 + 5c_2 + 3c_3 = 0 \\ 6c_1 - c_2 + c_3 = 0 \end{cases}$$

The only solution to this system is $c_1 = c_2 = c_3 = 0$, and therefore $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is a linearly independent set of vectors.