MATH 260 EXAM #1 KEY (SUMMER 2015)

1 We have

$$\cos \theta = \frac{\mathbf{p} \cdot \mathbf{q}}{\|\mathbf{p}\| \|\mathbf{q}\|} = \frac{-20}{\sqrt{26}\sqrt{38}} = -\frac{10}{\sqrt{247}} \quad \Rightarrow \quad \theta = \arccos\left(-\frac{10}{\sqrt{247}}\right) \approx 129.5^{\circ}.$$

2 Set $x_0 = (4, 5, 1)$ and $x_1 = (1, 3, -2)$, and let $\mathbf{v} = \overrightarrow{x_1 x_0}$. Then

$$\mathbf{x}(t) = \mathbf{x}_0 + t\mathbf{v} \implies \mathbf{x}(t) = \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$$

for $t \in \mathbb{R}$.

3 A normal vector for the plane is $\mathbf{n} = [2, 1, -3]^{\top}$ (which is a direction vector for the given line). Since the plane contains the point o = (0, 0, 0), the plane will consist of all points (x, y, z) for which the vector $[x, y, z]^{\top} - [0, 0, 0]^{\top} = [x, y, z]^{\top}$ is orthogonal to $\mathbf{n} = [2, 1, -3]^{\top}$:

$$[2, 1, -3]^{\mathsf{T}} \cdot [x, y, z]^{\mathsf{T}} = 0 \implies 2x + y - 3z = 0.$$

This is the nonparametric equation for the plane. The nonparametric equation can be used to find two other points on the plane such as $p_0 = (1, -2, 0)$ and $p_1 = (0, 3, 1)$. Let

$$\mathbf{u} = \mathbf{p}_0 - \mathbf{0} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \mathbf{p}_1 - \mathbf{0} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$.

A parametric equation is

$$\mathbf{p}(t) = \mathbf{0} + s\mathbf{u} + t\mathbf{v} \implies \mathbf{p}(t) = s \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$$

for $s, t \in \mathbb{R}$.

4 Letting x = y = 0 in the plane's equation gives z = 1/7, so p = (0, 0, 1/7) is a point on the plane. Let $\mathbf{v} = \overrightarrow{pq} = \mathbf{q} - \mathbf{p} = [5, 2, -\frac{22}{7}]^{\mathsf{T}}$. A normal vector for the plane is $\mathbf{n} = [4, -4, 7]^{\mathsf{T}}$. We project \mathbf{v} onto \mathbf{n} :

$$\operatorname{proj}_{\mathbf{n}}(\mathbf{v}) = \left(\frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n} = -\frac{10}{81} \begin{bmatrix} 4\\ -4\\ 7 \end{bmatrix}.$$

The distance D is the magnitude of this vector:

$$D = \|\operatorname{proj}_{\mathbf{n}}(\mathbf{v})\| = \frac{10}{9}.$$

5 The corresponding augmented matrix for the system is

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ -2 & 3 & -1 & 0 \\ -6 & 6 & 0 & -2 \end{bmatrix}.$$

We transform this matrix into row-echelon form:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ -2 & 3 & -1 & 0 \\ -6 & 6 & 0 & -2 \end{bmatrix} \xrightarrow{2r_1 + r_2 \to r_2} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 3 & -3 & 2 \\ 0 & 6 & -6 & 4 \end{bmatrix} \xrightarrow{-2r_2 + r_3 \to r_3} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 3 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We have obtained the equivalent system of equations

$$\begin{cases} x - z = 1 \\ 3y - 3z = 2, \end{cases}$$

giving x = z + 1 and $y = z + \frac{2}{3}$. Any ordered triple (x, y, z) that satisfies the original system must be of the form

$$(z+1,3z+\frac{2}{3},z)$$

for some $z \in \mathbb{R}$, and therefore the solution set is

$$\{(z+1,3z+\frac{2}{3},z):z\in\mathbb{R}\}.$$

In terms of column vectors, we have

$$\begin{bmatrix} z+1\\z+\frac{2}{3}\\z \end{bmatrix} = \begin{bmatrix} 1\\\frac{2}{3}\\0 \end{bmatrix} + \begin{bmatrix} z\\z\\z \end{bmatrix} = \begin{bmatrix} 1\\\frac{2}{3}\\0 \end{bmatrix} + z \begin{bmatrix} 1\\1\\1 \end{bmatrix},$$

and so solution set is

$$\left\{ \frac{1}{3} \begin{bmatrix} 3\\2\\0 \end{bmatrix} + t \begin{bmatrix} 1\\1\\1 \end{bmatrix} : t \in \mathbb{R} \right\},\,$$

which is a line in \mathbb{R}^3 .

6 We employ the same sequence of elementary row operations on both ${\bf A}$ and ${\bf I}_3$, as follows.

$$\begin{bmatrix} 3 & -6 & -1 & 1 & 7 \\ -1 & 2 & 2 & 3 & 1 \\ 4 & -8 & -3 & -2 & 6 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_1} \begin{bmatrix} -1 & 2 & 2 & 3 & 1 \\ 3 & -6 & -1 & 1 & 7 \\ 4 & -8 & -3 & -2 & 6 \end{bmatrix} \xrightarrow{3r_1 + r_2 \to r_2} \begin{bmatrix} -1 & 2 & 2 & 3 & 1 \\ 4 & -8 & -3 & -2 & 6 \end{bmatrix} \xrightarrow{3r_1 + r_2 \to r_2} \begin{bmatrix} -1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 5 & 10 & 10 \\ 0 & 0 & 5 & 10 & 10 \end{bmatrix} \xrightarrow{r_2 + r_3 \to r_3} \begin{bmatrix} -1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We now have the equivalent system of equations

$$\begin{cases} -x + 2y + 2z + 3w = 1\\ z + 2w = 2 \end{cases}$$

giving z=2-2w and x=2y-w+3 for $y,w\in\mathbb{R}$. Letting s=y and t=w, solution set is

$$\left\{ \begin{bmatrix} 2s - t + 3 \\ s \\ 2 - 2t \\ t \end{bmatrix} : s, t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -2 \\ 1 \end{bmatrix} : s, t \in \mathbb{R} \right\},$$

which is a plane in \mathbb{R}^4 .

7 Letting **b** = $[b_1, b_2, b_3, b_4]^{\top}$, we have

$$\begin{bmatrix} 1 & 0 & -1 & b_1 \\ -2 & 3 & -1 & b_2 \\ 3 & -3 & 0 & b_3 \\ 2 & 0 & -2 & b_4 \end{bmatrix} \xrightarrow{\begin{array}{c} 2r_1+r_2\to r_2 \\ -3r_1+r_3\to r_3 \\ -2r_1+r_4\to r_4 \end{array}} \begin{bmatrix} 1 & 0 & -1 & b_1 \\ 0 & 3 & -3 & b_2+2b_1 \\ 0 & -3 & 3 & b_3-3b_1 \\ 0 & 0 & 0 & b_4-2b_1 \end{bmatrix} \xrightarrow{r_2+r_3\to r_3} \begin{bmatrix} 1 & 0 & -1 & b_1 \\ 0 & 3 & -3 & b_2+2b_1 \\ 0 & 0 & 0 & b_3+b_2-b_1 \\ 0 & 0 & 0 & b_4-2b_1 \end{bmatrix},$$

so we must have $b_4 - 2b_1 = 0$ and $b_3 + b_2 - b_1 = 0$, which implies $b_4 = 2b_1$ and $b_3 = b_1 - b_2$. We have

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_1 - b_2 \\ 2b_1 \end{bmatrix}.$$

8 The product **AB** is undefined, while

$$\mathbf{BA} = \begin{bmatrix} 3 & -6 & 9 & -12 \\ 2 & -4 & 6 & -8 \\ 1 & -2 & 3 & -4 \end{bmatrix}.$$

9 One possibility:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

10 Letting

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{bmatrix},$$

the equation $\mathbf{X}\mathbf{A} = \mathbf{I}$ (where \mathbf{I} is the 2×2 identity matrix) yields a system of four equations in six unknowns:

$$\begin{cases} 2x_1 + 4x_2 + 2x_3 = 1\\ -x_1 - x_2 + 2x_3 = 0\\ 2x_4 + 4x_5 + 2x_6 = 0\\ -x_4 - x_5 + 2x_6 = 1 \end{cases}$$

This system breaks into two separate systems:

$$\begin{cases} 2x_1 + 4x_2 + 2x_3 = 1 \\ -x_1 - x_2 + 2x_3 = 0 \end{cases} \qquad \begin{cases} 2x_4 + 4x_5 + 2x_6 = 0 \\ -x_4 - x_5 + 2x_6 = 1 \end{cases}$$

With some algebra we find that

$$x_2 = -\frac{3}{5}x_1 + \frac{1}{5}, \quad x_3 = \frac{1}{5}x_1 + \frac{1}{10}, \quad x_5 = -\frac{3}{5}x_4 - \frac{1}{5}, \quad x_6 = \frac{1}{5}x_4 + \frac{2}{5},$$

and so

$$\mathbf{X} = \begin{bmatrix} x_1 & -\frac{3}{5}x_1 + \frac{1}{5} & \frac{1}{5}x_1 + \frac{1}{10} \\ x_4 & -\frac{3}{5}x_4 - \frac{1}{5} & \frac{1}{5}x_4 + \frac{2}{5} \end{bmatrix}.$$

If desired one may write

$$\mathbf{X}(s,t) = \begin{bmatrix} s & -\frac{3}{5}s + \frac{1}{5} & \frac{1}{5}s + \frac{1}{10} \\ t & -\frac{3}{5}t - \frac{1}{5} & \frac{1}{5}t + \frac{2}{5} \end{bmatrix}$$

for $s, t \in \mathbb{R}$.