
Math 260 Exam #1 Key (Summer 2014)

1a We have [
3 −1 2

] 3
−1

2

= [14],

which in practice is identified with the scalar 14.

1b We have  3
−1

2

[3 −1 2
]
=

 9 −3 6
−3 1 −2

6 −2 4



1c We have

AC =

 −2 −9
−12 3

9 7



2 First we find the inverse of the 2 × 2 matrix on the righthand side of the equation, using
the equation [

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
to get [

1 −2
−1 3

]−1
=

1

(1)(3)− (−2)(−1)

[
3 2
1 1

]
=

[
3 2
1 1

]
.

Now,

5A−
[

1 2
0 5

]
= 3A +

[
3 2
1 1

]
⇒ 2A =

[
3 2
1 1

]
+

[
1 2
0 5

]
=

[
4 4
1 6

]
⇒ A =

[
2 2

1/2 3

]
.

3 If we let

p =

4
5
1

, q =

 1
3
−2

 and v = q− p =

−3
−2
−3

,
then one vector equation for the line is x = p + tv for t ∈ R, or

x =

4
5
1

− t
3

2
3

, t ∈ R.

Other representations are possible.
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4a It can help to get the vector equation (also known as the parameterization) of L2. Letting
z = 1 gives x = 5 and

y =
z − 1

2
+ 4 =

1− 1

2
+ 4 = 4,

so (5, 4, 1) is one point on L2. Letting z = 3 gives x = 5 and

y =
z − 1

2
+ 4 =

3− 1

2
+ 4 = 5,

so (5, 5, 3) is another point on L2. Letting

p =

5
4
1

, q =

5
5
3

 and v = q− p =

0
1
2

,
then L2 is given by

x2(t) =

5
4
1

+ t

0
1
2

, t ∈ R,

while L1 is given by

x1(s) =

1
1
1

+ s

 2
1
−1

, s ∈ R.

We must find s, t ∈ R such that x1(s) = x2(t):1
1
1

+ s

 2
1
−1

=

5
4
1

+ t

0
1
2

.
This gives rise to the system of equations 2s+ 1 = 5

s+ 1 = t+ 4
−s+ 1 = 2t+ 1

which has the unique solution (s, t) = (2,−1). That is,

x2(−1) = x1(2) =

1
1
1

+ 2

 2
1
−1

=

 5
3
−1

,
so (5, 3,−1) is the point of intersection.

4b The plane certainly contains all points that L1 and L2 contain, such as

p1 =

 5
3
−1

, p2 =

1
1
1

, p3 =

5
4
1

.
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Letting

u = p2 − p1 =

−4
−2

2

 and v = p3 − p1 =

0
1
2

,
a vector equation (or parameterization) for the plane is x = p1 + su + tv, (s, t) ∈ R2. That is,xy

z

=

 5
3
−1

+ s

−4
−2

2

+ t

0
1
2

. (1)

This is not the “equation” for the plane. To find the equation, we obtain from (1) the systemx= 5− 4s
y = 3− 2s+ t
z =−1 + 2s+ 2t

From the system’s first and second equations we have

s =
5− x

4
and t = y − 3 + 2s = y − 3 +

5− x
4

,

Substituting these into the third equation then yields

z = −1 + 2s+ 2t = −1 + 2

(
5− x

4

)
+ 2

(
y − 3 +

5− x
4

)
=

1

2
+ 2y − 3

2
x,

or

3x− 4y + 2z = 1,

which is the equation of the plane.

5a Let p = (5, 1, 3). Geometrically, the plane P may be characterized as the set of all points
q = (x, y, z) ∈ R3 such that the vector #„pq is orthogonal to n, which is to say #„pq · n = 0. Now,

0 = #„pq · n =
[
x− 5 y − 1 z − 3

]> 1
−4

2

= (x− 5)− 4(y − 1) + 2(z − 3),

and thus

x− 4y + 2z = 7

is the algebraic equation of P .

5b From the algebraic equation we have x = 7− 4y + 2z, and so P may be characterized as
the set of vectors of the formxy

z

=

7− 4y + 2z
y
z

=

7
0
0

+ y

4
1
0

+ z

−2
0
1

;
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that is, P is given as the vector equation

x =

7
0
0

+ s

4
1
0

+ t

−2
0
1

, s, t ∈ R.

6 The corresponding augmented matrix for the system is−3 −5 36 10
−1 0 7 5

1 1 −10 −4

.
We transform this matrix into row-echelon form:−3 −5 36 10

−1 0 7 5
1 1 −10 −4

 r1↔r3−−−−→

 1 1 −10 −4
−1 0 7 5
−3 −5 36 10

 r1+r2→r2−−−−−−−→
3r1+r3→r3

1 1 −10 −4
0 1 −3 1
0 −2 6 −2


2r2+r3→r3−−−−−−−→

1 1 −10 −4
0 1 −3 1
0 0 0 0

.
We have obtained the equivalent system of equations{

x+ y − 10z =−4
y − 3z = 1

From the second equation we have

y = 3z + 1,

which, when substituted into the first equation, yields

x = 10z − y − 4 = 10z − (3z + 1)− 4 = 7z − 5.

That is, we have x = 7z−5 and y = 3z+1, and z is free to assume any scalar value whatsoever.
Any ordered triple (x, y, z) that satisfies the original system must be of the form

(7z − 5, 3z + 1, z)

for some z ∈ R, and therefore the solution set is

S = {(7z − 5, 3z + 1, z) : z ∈ R}.

In terms of column vectors, we have7z − 5
3z + 1
z

=

7z
3z
z

+

−5
1
0

= z

7
3
1

+

−5
1
0

,
and so

S =


−5

1
0

+ t

7
3
1

 : t ∈ R

.
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7 We employ the same sequence of elementary row operations on both A and I3, as follows. 2 4 3 1 0 0
−1 3 0 0 1 0

0 2 1 0 0 1

 r2↔r1−−−−−→
−r1→r1

1 −3 0 0 −1 0
2 4 3 1 0 0
0 2 1 0 0 1

 −2r1+r2→r2−−−−−−−−→

1 −3 0 0 −1 0
0 10 3 1 2 0
0 2 1 0 0 1

 r2↔r3−−−−→

1 −3 0 0 −1 0
0 2 1 0 0 1
0 10 3 1 2 0

 −5r2+r3→r3−−−−−−−−→

1 −3 0 0 −1 0
0 2 1 0 0 1
0 0 −2 1 2 −5

 1
2
r2→r2−−−−−→

1 −3 0 0 −1 0
0 1 1/2 0 0 1/2
0 0 −2 1 2 −5

 3r2+r1→r1−−−−−−−→

1 0 3/2 0 −1 3/2
0 1 1/2 0 0 1/2
0 0 −2 1 2 −5

 1
4
r3+r2→r2−−−−−−−→

3
4
r3+r1→r1

1 0 0 3/4 1/2 −9/4
0 1 0 1/4 1/2 −3/4
0 0 −2 1 2 −5

 − 1
2
r3→r3−−−−−−→

1 0 0 3/4 1/2 −9/4
0 1 0 1/4 1/2 −3/4
0 0 1 −1/2 −1 5/2

.
Therefore

A−1 =

 3/4 1/2 −9/4
1/4 1/2 −3/4
−1/2 −1 5/2

.
To solve Ax = b we use A−1:

Ax = b ⇒ x = A−1b =
1

4

 3 2 −9
1 2 −3
−2 −4 10

 2
0
−1

=
1

4

 15
5

−14

=

 15/4
5/4
−7/2

.

8 Let C denote the matrix. Then

det(C)

−2r1+r2→r2
−r1+r3→r3

=========
−2r1+r4→r4

∣∣∣∣∣∣∣∣
1 −4 3 2
0 1 −1 −3
0 6 3 −2
0 −2 8 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −1 −3
6 3 −2
−2 8 0

∣∣∣∣∣∣
4c1+c2→c2

========

∣∣∣∣∣∣
1 3 −3
6 27 −2
−2 0 0

∣∣∣∣∣∣ = (−1)3+1(−2)

∣∣∣∣ 3 −3
27 −2

∣∣∣∣
= −2[(3)(−2)− (−3)(27)] = −150.
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9 Here Ax = b with

A =

 1 1 1
2 1 −1
−1 2 1

, x =

xy
z

, b =

8
3
3

.
We have

det(A) =

∣∣∣∣ 1 −1
2 1

∣∣∣∣− ∣∣∣∣ 2 −1
−1 1

∣∣∣∣+

∣∣∣∣ 2 1
−1 2

∣∣∣∣ = 3− 1 + 5 = 7,

and by Cramer’s Rule,

x =
1

det(A)

8 1 1
3 1 −1
3 2 1

=
1

7
(21) = 3

y =
1

det(A)

 1 8 1
2 3 −1
−1 3 1

=
1

7
(7) = 1

z =
1

det(A)

 1 1 8
2 1 3
−1 2 3

=
1

7
(28) = 4.

The solution is therefore (x, y, z) = (3, 1, 4).

10 A is not invertible if and only if det(A) = 0; that is, we need∣∣∣∣ 2− λ 3
2 1− λ

∣∣∣∣ = (2− λ)(1− λ)− (3)(2) = (λ− 4)(λ+ 1) = 0,

which leads us to conclude that A is not invertible if and only if λ = −1, 4.


