MATH 260 ExaM #4 KEY (SUMMER 2013)

1 Here expansion according to the first column will be done:
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2 Every 3 x 3 subdeterminant of the given matrix A equals 0, so no three of the four column
vectors of A are linearly independent and therefore rank(A) < 2. However, the submatrix
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has nonzero subdeterminant
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which is to say B has two linearly independent column vectors and so the two row vectors of
B must also be linearly independent. Of course, the two row vectors of B are also row vectors
of A, implying that rank(A) > 2. Therefore rank(A) = 2.

3 Here Ax = b with
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and by Cramer’s Rule,
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4 We set out to find all
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for some A € R. The matrix equation corresponds to the system of equations
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for which

Now, if A # 1 then we must have x = y = 0, but 0 by definition cannot be an eigenvector.
Assume that A = 1. Then the system consists only of the equation ay = 0, and since a # 0 we
must have y = 0 while z remains arbitrary. Thus the set of eigenvectors for the matrix
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which is easily seen to be a subspace of R? with basis
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Since |B| = 1 we conclude that F is a 1-dimensional vector space.
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6 We have
1 -3 3 t 00 1—1¢ -3 3
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Expanding the determinant according to the 2nd row then gives
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= (t+2)*(t — 4),

and so we see that Pa(t) =0 for t = —2,4. Thus the eigenvalues of A are A = —2,4.
The eigenspace of A corresponding to A = —2 is

E 5 =Nul(A +2I3) = {x € R®: (A +2I3)x = 0}
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Writing the matrix equation—which is a homogeneous system of equations—as an augmented
matrix, we have
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6 —6 6|0 7 1o 0 0]0 0 000
Hence 1 — x5 + 3 = 0, which implies that x3 = x5 — x; and so
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and so it is clear that ;
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is a linearly independent set of vectors that spans E_5 and therefore must be a basis for E_.
Notice that the elements of B_, are in fact eigenvectors of A corresponding to the eigenvalue
—2, as are all the vectors belonging to E_.

Next, the eigenspace of A corresponding to A =4 is

Ey = Nul(A —4I3) = {x € R® : (A — 4I3)x = 0}
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Applying Gaussian Elimination to the corresponding augmented matrix yields
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From the top row we obtain x5 = z7, and from the middle row we obtain x3 = 225 and thus
xr3 = 2x1. Now,
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Clearly

By= 4|1
2
is a linearly independent set that spans F; and so qualifies as a basis for F,. The vector
belonging to B, is an eigenvector of A corresponding to the eigenvalue 4, as is any real scalar
multiple of the vector.



