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1 This is easy: the set does not contain the zero vector (0% + 0% + 0* # 1), which violates
Axiom A3.

2 The set is a vector space—and to prove it is not hard, just tedious (there are eight axioms,
after all). Let
S={f:R—=R| f(10) = 0}.
Let f,g,h € S and a,b € R. Let x € R be arbitrary. We have f +¢g € S and af € S since
(f+9)(10) = f(10) + g(10) =0+ 0=0 and (af)(10) =af(10) =a(0) =0,

and so there is closure under addition and scalar multiplication.
By the Commutative Property of Addition we have

(f+9)(@) = f(z) +g(x) = g(x) + f(z) = (g + f)(2),
so that f + ¢ = ¢+ f. Axiom Al holds.
We have
f(@) +lg(@) + h(z)] = [f(z) + g(2)] + h(z)
by the Associative Property of Addition, and thus f + (¢ + h) = (f + g) + h. Axiom A2 holds.

Let o be the zero function. That is, o(z) = 0 for all z € R. Since 0(10) = 0 we see that
o€ S. Now,

(0+ f)(x) = o(x) + f(x) = 0+ f(z) = f(x)
and
(f +0)(z) = f(z) + o(x) = f(x) + 0 = f(z),
andso o+ f = f+ 0= f. Axiom A3 holds.
As usual —f is the function given by (—f)(x) = —f(x), so in particular (—f)(10) =
—f(10) = 0 implies that —f € S. Now,
(=f+ @) = (=z) + f(z) = —f(z) + f(z) = 0= o(x)
shows that —f + f = o. Similarly f 4 (—f) = 0. Axiom A4 holds.
By the Distributive Property,
(a(f +9)) (@) = a(f + g)(x) = a[f () + g(z)] = af (z) + ag(z)
= (af)(z) + (ag)(z) = (af + ag)(z),
which shows that a(f 4+ ¢g) = af + ag. Axiom A5 holds.
Again by the Distributive Property,
((a+b)f)(x) = (a+b)f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) = (af +bf)(2),
so (a+b)f =af +bf. Axiom A6 holds.
By the Associative Property of Multiplication,
(a(v)))(2) = a(bf)(z) = a(bf(z)) = (ab) f(x) = ((ab) f) (@),

so a(bf) = (ab) f. Axiom AT holds.
Finally, since 1 € R is the multiplicative identity, we have (1f)(x) = 1f(z) = f(z). This
shows that 1f = f, and Axiom A8 is jumping for joy.



3 Let S denote the set, and let (x1,71) and (z3,y2) be elements of S. Let ¢ € R. Since
cxy — 2(cyr) = c(xy — 2y1) = ¢(0) =0,
we conclude that (cxq,cy;) € S. Also,
(w1 4+ 32) = 2(y1 +y2) = (21 — 2y1) + (32— 22) =0+ 0=0

shows that (z; + x9,71 + y2) € S. Since S is closed under scalar multiplication and vector
addition (i.e. (z1,91) € S implies c(x1,y1) = (cx1,cyr) € S, and (x1,11), (x2,92) € S implies
(x1,91) + (T2, y2) = (w1 + T2, y1 + y2) € S), we conclude that S is a subspace of R.

4 Suppose x,y € UNV and c is a scalar. Since x,y € U and U is a subspace, we have
cx e U and x+y € U. Since x,y € V and V is a subspace, we have cx € V and x+y € V.
Therefore cx €e UNV and x+y € UNV. We have now shown that U NV is closed under
scalar multiplication and vector addition, and therefore U NV is a subspace.

5 Suppose that x,y € U+, sothat x-u=0and y-u =0 for all u € U. Since for all u € U
we have

it follows that x +y € U*.
Now suppose that x € U+ and ¢ € R. Then for any u € U we have
(ex)-u=c(x-u)=c(0)=0,

which implies that cx € U+.
So, U+ # @& since 0 € U™, and since U+ is closed under scalar multiplication and vector
addition it is a subspace of R".

6 We show that S = {x € R": a-x > ¢} is convex. For any u,v € S let x € {4y, the line
segment joining u and v. Then x = (1 — t)u + tv for some t € [0, 1]. Now, since u and v are
in S we have a-u > cand a-v > ¢, so that

a-x=(1—-ta-u+ta-v>(1l—t)c+tc=c

and therefore x € S. This shows that /,, C 5, and since u,v € S are arbitrary it follows that
S is convex.

7 The proposition in §3.4 of the Notes (also §3.4 of the book) could be used here: (a,b) and
(c,d) are linearly independent if and only if ad — bc # 0. So, since

(1)) = @2)(1) =3#0,
we conclude that (1,2) and (1,5) are linearly independent. (There are at least a couple other
ways to do this problem.)

8 Let ¢q,c9,c3 € R be such that

€108 2% + ¢9 cos’ = + ¢gsin® & = 0 (1)
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for all z € (—o0,00). The functions cos2z, cos?z, and sin?z are linearly independent on
(—00,00) if and only if the only way to satisfy (1) for all —oo < 2 < oo is to have ¢; = ¢5 =
cs3 = 0. However, it is true that cos 2z = cos? z — sin® z. Thus (1) becomes

c1(cos® v — sin® ) + ¢y cos® v + czsin® x = 0.

Now notice that this equation, and subsequently (1), is satisfied for all —co < x < oo if we let
c1 =1, co=—1,and ¢ = 1. So (1) has a nontrivial solution on (—oo,c0), and therefore the
functions cos 2z, cos? z, and sin® x are linearly dependent on (—o0, 00).

9 We get a matrix in row-echelon form using elementary row operations on the given matrix:

1 1 0 1] —rgresm [1 1 0 1 1101
1 2 2 1| Z2nfmeemso b 12 o 22201001 2 0
3 4 2 3 0120 0000

The matrix is now in row-echelon form. We see that rank(A) = row-rank(A) = 2.

10 T takes (z,y) € R? and returns (u,v) € R? given by (u,v) = (zy,y). Points on the
line z = 2 are of the form (2,y), where —oo < y < o0, and so for these points 7" returns
(u,v) = (2y,y). We see that y = v, so in the uv-coordinate system the image under 7" of the
line x = 2 is the set {(2v,v) : v € R}, or equivalently

{(v,%v) :UER}.

This is also a line, as pictured below.
v

). Take the case when ¢ =2, z =1, and y = 2,

11 Not linear. In general T'(cx,cy) # ¢T'(z,y
1,2) = 2(1)(2) = 4. Hence T/(2,4) # 2T(1,2).

for instance: T'(2,4) = (2)(4) = 8, but 27(1,

12 Let C be a convex set in a vector space V, and L : V — W a linear transformation. We
must show that

L(C)={L(v):veV}
1S a convex set.

Let a,b € L(C) be arbitrary and fix x € {,p (the line segment joining a and b), so that
there exists some ¢ € [0, 1] such that x = (1 — t)a + tb. Now, there exist some a, 3 € C such
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that L(a) = a and L(8B) = b, and since C is convex the vector € = (1 — t)a + 3 must be an
element of C'. Observing that

L&) =L(1-t)a+tB8)=(01—-t)L(a) +tL(B) = (1 —t)a+tb=x
for £ € C', we conclude that x € L(C'). Hence , C L(C) and L(C) is convex.

13 Suppose S is a line in V| which is to say S = {u+tv : ¢t € R} for some u,v € V. For
L .V — W there are two cases: (1) L(v) = 0; and (2) L(v) # 0. Since L(u + tv) =
L(u) 4+ tL(v), we find that Case (1) results in a point in W: for any t € R we get

L(u+tv)=L(u) +tL(v) = L(u) +t0 = L(u) + 0 = L(u),

and so L(S) = {L(u)}; that is, the image of S under L consists of the single point L(u). On
the other hand Case (2) results in the line

{L(u) +tL(v): t € R}
in W.



