
Math 260 Exam #2 Key (Summer 2013)

1 This is easy: the set does not contain the zero vector (02 + 02 + 02 6= 1), which violates
Axiom A3.

2 The set is a vector space—and to prove it is not hard, just tedious (there are eight axioms,
after all). Let

S = {f : R→ R | f(10) = 0}.
Let f, g, h ∈ S and a, b ∈ R. Let x ∈ R be arbitrary. We have f + g ∈ S and af ∈ S since

(f + g)(10) = f(10) + g(10) = 0 + 0 = 0 and (af)(10) = af(10) = a(0) = 0,

and so there is closure under addition and scalar multiplication.
By the Commutative Property of Addition we have

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x),

so that f + g = g + f . Axiom A1 holds.
We have

f(x) + [g(x) + h(x)] = [f(x) + g(x)] + h(x)

by the Associative Property of Addition, and thus f + (g + h) = (f + g) + h. Axiom A2 holds.
Let o be the zero function. That is, o(x) = 0 for all x ∈ R. Since o(10) = 0 we see that

o ∈ S. Now,

(o + f)(x) = o(x) + f(x) = 0 + f(x) = f(x)

and

(f + o)(x) = f(x) + o(x) = f(x) + 0 = f(x),

and so o + f = f + o = f . Axiom A3 holds.
As usual −f is the function given by (−f)(x) = −f(x), so in particular (−f)(10) =

−f(10) = 0 implies that −f ∈ S. Now,

(−f + f)(x) = (−f)(x) + f(x) = −f(x) + f(x) = 0 = o(x)

shows that −f + f = o. Similarly f + (−f) = o. Axiom A4 holds.
By the Distributive Property,(

a(f + g)
)
(x) = a(f + g)(x) = a[f(x) + g(x)] = af(x) + ag(x)

= (af)(x) + (ag)(x) = (af + ag)(x),

which shows that a(f + g) = af + ag. Axiom A5 holds.
Again by the Distributive Property,(

(a + b)f
)
(x) = (a + b)f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) = (af + bf)(x),

so (a + b)f = af + bf . Axiom A6 holds.
By the Associative Property of Multiplication,(

a(bf)
)
(x) = a(bf)(x) = a(bf(x)) = (ab)f(x) =

(
(ab)f

)
(x),

so a(bf) = (ab)f . Axiom A7 holds.
Finally, since 1 ∈ R is the multiplicative identity, we have (1f)(x) = 1f(x) = f(x). This

shows that 1f = f , and Axiom A8 is jumping for joy.
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3 Let S denote the set, and let 〈x1, y1〉 and 〈x2, y2〉 be elements of S. Let c ∈ R. Since

cx1 − 2(cy1) = c(x1 − 2y1) = c(0) = 0,

we conclude that 〈cx1, cy1〉 ∈ S. Also,

(x1 + x2)− 2(y1 + y2) = (x1 − 2y1) + (x2 − 2y2) = 0 + 0 = 0

shows that 〈x1 + x2, y1 + y2〉 ∈ S. Since S is closed under scalar multiplication and vector
addition (i.e. 〈x1, y1〉 ∈ S implies c〈x1, y1〉 = 〈cx1, cy1〉 ∈ S, and 〈x1, y1〉, 〈x2, y2〉 ∈ S implies
〈x1, y1〉+ 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 ∈ S), we conclude that S is a subspace of R2.

4 Suppose x,y ∈ U ∩ V and c is a scalar. Since x,y ∈ U and U is a subspace, we have
cx ∈ U and x + y ∈ U . Since x,y ∈ V and V is a subspace, we have cx ∈ V and x + y ∈ V .
Therefore cx ∈ U ∩ V and x + y ∈ U ∩ V . We have now shown that U ∩ V is closed under
scalar multiplication and vector addition, and therefore U ∩ V is a subspace.

5 Suppose that x,y ∈ U⊥, so that x · u = 0 and y · u = 0 for all u ∈ U . Since for all u ∈ U
we have

(x + y) · u = x · u + y · u = 0 + 0 = 0,

it follows that x + y ∈ U⊥.
Now suppose that x ∈ U⊥ and c ∈ R. Then for any u ∈ U we have

(cx) · u = c(x · u) = c(0) = 0,

which implies that cx ∈ U⊥.
So, U⊥ 6= ∅ since 0 ∈ U⊥, and since U⊥ is closed under scalar multiplication and vector

addition it is a subspace of Rn.

6 We show that S = {x ∈ Rn : a · x ≥ c} is convex. For any u,v ∈ S let x ∈ `uv, the line
segment joining u and v. Then x = (1 − t)u + tv for some t ∈ [0, 1]. Now, since u and v are
in S we have a · u ≥ c and a · v ≥ c, so that

a · x = (1− t)a · u + ta · v ≥ (1− t)c + tc = c

and therefore x ∈ S. This shows that `uv ⊆ S, and since u,v ∈ S are arbitrary it follows that
S is convex.

7 The proposition in §3.4 of the Notes (also §3.4 of the book) could be used here: 〈a, b〉 and
〈c, d〉 are linearly independent if and only if ad− bc 6= 0. So, since

(1)(5)− (2)(1) = 3 6= 0,

we conclude that 〈1, 2〉 and 〈1, 5〉 are linearly independent. (There are at least a couple other
ways to do this problem.)

8 Let c1, c2, c3 ∈ R be such that

c1 cos 2x + c2 cos2 x + c3 sin2 x = 0 (1)
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for all x ∈ (−∞,∞). The functions cos 2x, cos2 x, and sin2 x are linearly independent on
(−∞,∞) if and only if the only way to satisfy (1) for all −∞ < x < ∞ is to have c1 = c2 =
c3 = 0. However, it is true that cos 2x = cos2 x− sin2 x. Thus (1) becomes

c1(cos2 x− sin2 x) + c2 cos2 x + c3 sin2 x = 0.

Now notice that this equation, and subsequently (1), is satisfied for all −∞ < x <∞ if we let
c1 = 1, c2 = −1, and c3 = 1. So (1) has a nontrivial solution on (−∞,∞), and therefore the
functions cos 2x, cos2 x, and sin2 x are linearly dependent on (−∞,∞).

9 We get a matrix in row-echelon form using elementary row operations on the given matrix:1 1 0 1
1 2 2 1
3 4 2 3

 −r1+r2→r2
−3r1+r3→r3−−−−−−−→

1 1 0 1
0 1 2 0
0 1 2 0

 −r2+r3→r3−−−−−−→

1 1 0 1
0 1 2 0
0 0 0 0


The matrix is now in row-echelon form. We see that rank(A) = row-rank(A) = 2.

10 T takes (x, y) ∈ R2 and returns (u, v) ∈ R2 given by (u, v) = (xy, y). Points on the
line x = 2 are of the form (2, y), where −∞ < y < ∞, and so for these points T returns
(u, v) = (2y, y). We see that y = v, so in the uv-coordinate system the image under T of the
line x = 2 is the set {(2v, v) : v ∈ R}, or equivalently{(

v, 1
2
v
)

: v ∈ R
}
.

This is also a line, as pictured below.

u

v

2−2

1

−1

11 Not linear. In general T (cx, cy) 6= cT (x, y). Take the case when c = 2, x = 1, and y = 2,
for instance: T (2, 4) = (2)(4) = 8, but 2T (1, 2) = 2(1)(2) = 4. Hence T (2, 4) 6= 2T (1, 2).

12 Let C be a convex set in a vector space V , and L : V → W a linear transformation. We
must show that

L(C) = {L(v) : v ∈ V }
is a convex set.

Let a,b ∈ L(C) be arbitrary and fix x ∈ `ab (the line segment joining a and b), so that
there exists some t ∈ [0, 1] such that x = (1− t)a + tb. Now, there exist some α,β ∈ C such
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that L(α) = a and L(β) = b, and since C is convex the vector ξ = (1− t)α + tβ must be an
element of C. Observing that

L(ξ) = L((1− t)α + tβ) = (1− t)L(α) + tL(β) = (1− t)a + tb = x

for ξ ∈ C, we conclude that x ∈ L(C). Hence `ab ⊆ L(C) and L(C) is convex.

13 Suppose S is a line in V , which is to say S = {u + tv : t ∈ R} for some u,v ∈ V . For
L : V → W there are two cases: (1) L(v) = 0; and (2) L(v) 6= 0. Since L(u + tv) =
L(u) + tL(v), we find that Case (1) results in a point in W : for any t ∈ R we get

L(u + tv) = L(u) + tL(v) = L(u) + t0 = L(u) + 0 = L(u),

and so L(S) = {L(u)}; that is, the image of S under L consists of the single point L(u). On
the other hand Case (2) results in the line

{L(u) + tL(v) : t ∈ R}
in W .


