
Math 260 Exam #3 Key (Summer 2012)

1a. Let v ∈ V . Now, P (P (v)) = (P ◦ P )(v) = P (v), which implies that

P (v − P (v)) = P (v)− P (P (v)) = 0

and so v − P (v) ∈ Ker(P ). Noting that P (v) ∈ Im(P ), we readily obtain

v = (v − P (v)) + P (v) ∈ Ker(P ) + Im(P ).

Thus V ⊆ Ker(P )+Im(P ), and since the reverse containment follows from the closure properties
of a vector space, we conclude that V = Ker(P ) + Im(P ).

1b. Let v ∈ Ker(P ) ∩ Im(P ). Then P (v) = 0 and there exists some u ∈ V such that
P (u) = v. With these results and the hypothesis P ◦ P = P , we have

0 = P (v) = P (P (u)) = P (u) = v,

implying v ∈ {0} and so Ker(P ) ∩ Im(P ) ⊆ {0}. The reverse containment holds since Ker(P )
and Im(P ) are subspaces of V and so must both contain 0. Therefore Ker(P ) ∩ Im(P ) = {0}.

2. Let v ∈ U +W , so v = u + w for some u ∈ U and w ∈ W . Now, let u′ ∈ U and w′ ∈ W
be such that v = u′ + w′. Then

0 = v − v = (u + w)− (u′ + w′) = (u− u′) + (w −w′),

and so u−u′ = w′−w. Since u−u′ ∈ U and w′−w ∈ W , it follows that u−u′,w′−w ∈ U∩W .
But U ∩W = {0}, so u−u′ = w′−w = 0 and we conclude that u = u′ and w = w′. That is,
the vectors u ∈ U and w ∈ W for which v = u + w are unique.

3. Suppose that L(x, y) = (0, 0). Then 2x+ y = 0 and 3x− 5y = 0, which is a homogeneous
system of equations which has only the trivial solution x = y = 0. That is, if (x, y) ∈ Ker(L),
then (x, y) = (0, 0) and it follows that Ker(L) = {(0, 0)}. Therefore L is invertible.

4. Suppose that v ∈ V is such that L(v) = 0. Then

0 = O(v) = (L2 + 2L+ I)(v) = L2(v) + 2L(v) + I(v)

= L(L(v)) + 2L(v) + v = L(0) + 20 + 0 = 0 + 20 + v = v,

which implies that Ker(L) = {0} and so L is invertible.

5. Here expansion according to the first column will be done:∣∣∣∣∣∣∣∣
−1 1 2 0

0 3 2 1
0 4 1 2
3 1 5 7

∣∣∣∣∣∣∣∣
3r1+r3→r3−−−−−−→

∣∣∣∣∣∣∣∣
−1 1 2 0

0 3 2 1
0 4 1 2
0 4 11 7

∣∣∣∣∣∣∣∣ = (−1)1+1(−1)

∣∣∣∣∣∣
3 2 1
4 1 2
4 11 7

∣∣∣∣∣∣
−2r1+r2→r2
−7r1+r3→r3−−−−−−−→
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−

∣∣∣∣∣∣
3 2 1
−2 −3 0
−17 −3 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3 2 1
−2 −3 0
17 3 0

∣∣∣∣∣∣ = (−1)1+3(1)

∣∣∣∣−2 −3
17 3

∣∣∣∣ = (−2)(3)− (−3)(17)

= −6 + 51 = 45.

6. Every 3×3 subdeterminant of the given matrix A equals 0, so no three of the four column
vectors of A are linearly independent and therefore rank(A) ≤ 2. However, the submatrix

B =

[
3 5 1 4
2 −1 1 1

]
has nonzero subdeterminant ∣∣∣∣1 4

1 1

∣∣∣∣ = 1− 4 = −3,

which is to say B has two linearly independent column vectors and so the two row vectors of
B must also be linearly independent. Of course, the two row vectors of B are also row vectors
of A, implying that rank(A) ≥ 2. Therefore rank(A) = 2.

7. Here Ax = b with

A =

2 −1 1
1 3 −2
4 −3 1

, x =

xy
z

, b =

1
0
2

.
We have

det(A) = 2

∣∣∣∣ 3 −2
−3 1

∣∣∣∣− ∣∣∣∣−1 1
−3 1

∣∣∣∣+ 4

∣∣∣∣−1 1
3 −2

∣∣∣∣ = 2(−3)− 2 + 4(−1) = −12,

and by Cramer’s Rule,

x =
1

det(A)

∣∣∣∣∣∣
1 −1 1
0 3 −2
2 −3 1

∣∣∣∣∣∣ = − 1

12
(−5) =

5

12

y =
1

det(A)

∣∣∣∣∣∣
2 1 1
1 0 −2
4 2 1

∣∣∣∣∣∣ = − 1

12
(1) = − 1

12

z =
1

det(A)

∣∣∣∣∣∣
2 −1 1
1 3 0
4 −3 2

∣∣∣∣∣∣ = − 1

12
(−1) =

1

12

8. We set out to find all 〈x, y〉 ∈ R2 for which[
1 a
0 1

][
x
y

]
= λ

[
x
y

]
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for some λ ∈ R. The matrix equation corresponds to the system of equations{
(1− λ)x + ay = 0

(1− λ)y = 0
Now, if λ 6= 1 then we must have x = y = 0, but 〈0, 0〉 by definition cannot be an eigenvector.
Assume that λ = 1. Then the system consists only of the equation ay = 0, and since a 6= 0 we
must have y = 0 while x remains arbitrary. Thus the set of eigenvectors for the matrix[

1 a
0 1

]
is S = {〈x, 0〉 : x ∈ R}, which is easily seen to be a subspace of R2 with basis B = {〈1, 0〉}.
Since |B| = 1 we conclude that S is a 1-dimensional vector space.

9a. We have

PA(t) = det(A− tI3) =

∣∣∣∣∣∣
4− t 0 1
−2 1− t 0
−2 0 1− t

∣∣∣∣∣∣ = (1− t)
∣∣∣∣4− t 1
−2 1− t

∣∣∣∣
= (1− t)[(4− t)(1− t) + 2] = (1− t)(t2 − 5t+ 6) = (1− t)(t− 3)(t− 2).

9b. We see that PA(t) = 0 for t = 1, 2, 3, so the eigenvalues of A are λ = 1, 2, 3.

9c. The eigenspace of A corresponding to λ = 1 is

E1 = Nul(A− I3) = {x ∈ R3 : (A− I3)x = 0},

which is the set of all x = 〈x1, x2, x3〉 such that 3 0 1
−2 0 0
−2 0 0

x1x2
x3

 =

0
0
0

,
and so E1 = {〈0, x2, 0〉 : x2 ∈ R}. A basis for E1 is {〈0, 1, 0〉}.

The eigenspace of A corresponding to λ = 2 is

E2 = Nul(A− 2I3) = {x ∈ R3 : (A− 2I3)x = 0},

which is the set of all x = 〈x1, x2, x3〉 such that 2 0 1
−2 −1 0
−2 0 −1

x1x2
x3

 =

0
0
0

,
or equivalently 2 0 1

0 −1 1
0 0 0

x1x2
x3

 =

0
0
0

,
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so that we must have x2 = x3 and x1 = −1
2
x3. Hence

E2 =
{〈
−1

2
x3, x3, x3

〉
: x3 ∈ R

}
A basis for E2 is {〈−1, 2, 2〉}.

The eigenspace of A corresponding to λ = 3 is

E3 = Nul(A− 3I3) = {x ∈ R3 : (A− 3I3)x = 0},

which is the set of all x = 〈x1, x2, x3〉 such that 1 0 1
−2 −2 0
−2 0 −2

x1x2
x3

 =

0
0
0

,
or equivalently 1 0 1

0 −2 2
0 0 0

x1x2
x3

 =

0
0
0

,
so that we must have x2 = x3 and x1 = −x3. Hence

E2 = {〈−x3, x3, x3〉 : x3 ∈ R}
A basis for E3 is {〈−1, 1, 1〉}.

10a. Property 1: let x,y ∈ Rn. Since xTAy is formally a 1× 1 matrix it must equal its own
transpose, and so:

〈x,y〉 = xTAy = (xTAy)T = yTAT (xT )T = yTATx = yTAx = 〈y,x〉.
Property 2: let x,y, z ∈ Rn. Then

〈x,y + z〉 = xTA(y + z) = xTAy + xTAz = 〈x,y〉+ 〈x, z〉.
Property 3: let x,y ∈ Rn and c ∈ R. Then

〈cx,y〉 = (cx)TAy = c(xTAy) = c〈x,y〉
and

〈x, cy〉 = xTA(cy) = c(xTAy) = c〈x,y〉.

10b. Letting

A =

[
0 −1
−1 0

]
,

we have 〈[
1
1

]
,

[
1
1

]〉
=
[
1 1

][ 0 −1
−1 0

][
1
1

]
= [−2]→ −2 < 0,

violating Property 4.


