
Math 260 Exam #2 Key (Summer 2012)

1. We show that S = {x ∈ Rn : a · x ≥ c} is convex. For any u,v ∈ S let x ∈ `uv, the line
segment joining u and v. Then x = (1 − t)u + tv for some t ∈ [0, 1]. Now, since u and v are
in S we have a · u ≥ c and a · v ≥ c, so that

a · x = (1− t)a · u + ta · v ≥ (1− t)c + tc = c

and therefore x ∈ S. This shows that `uv ⊆ S, and since u,v ∈ S are arbitrary it follows that
S is convex.

2. The proposition in section 3.4 of the notes (or in section 3.4 of the book) could be used here:
〈a, b〉 and 〈c, d〉 are linearly independent if and only if ad− bc 6= 0. So, since (1)(5)− (2)(1) =
3 6= 0, we conclude that 〈1, 2〉 and 〈1, 5〉 are linearly independent.

3. Suppose that
n∑

i=1

civi = 0. (1)

For any 1 ≤ j ≤ r we have( n∑
i=1

civi

)
· vj = 0 · vj ⇒

n∑
i=1

ci(vi · vj) = 0 ⇒ cj(vj · vj) = 0 ⇒ cj|vj|2 = 0.

Now, since vj 6= 0 we have |vj| 6= 0, and so cj|vj|2 = 0 implies cj = 0. We conclude that
c1 = · · · = cr = 0, which shows that (1) has only the trivial solution and therefore v1, . . . ,vr

are linearly independent.

4. We get a matrix in row-echelon form using elementary row operations on the given matrix:
1 2 −3
−1 −2 3

4 8 −12
1 −1 5

 −r1+r2→r2, −4r1+r3→r3−−−−−−−−−−−−−−−→
−r1+r4→r4


1 2 −3
0 0 0
0 0 0
0 −3 8

 r2↔r4−−−−→


1 2 −3
0 −3 8
0 0 0
0 0 0


Now it is clear that rank(A) = row-rank(A) = 2.

5. T takes (x, y) ∈ R2 and returns (u, v) ∈ R2 given by (u, v) = (3x, 7y). Thus x = u/3 and
y = v/7, and so from x2 + y2 = 1 we obtain(u

3

)2
+
(v

7

)2
= 1.

In the uv-coordinate system we find that the image of the circle x2 + y2 = 1 under T is the
ellipse pictured below.
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v

6. It is linear. For x1 = 〈x1, y1, z1〉 and x2 = 〈x2, y2, z2〉 in R3 we have

T (x1 + x2) = T (x1 + x2, y1 + y2, z1 + z2) = 〈2(x1 + x2), (y1 + y2)− (z1 + z2)〉
= 〈2x1 + 2x2, (y1 − z1) + (y2 − z2)〉 = 〈2x1, y1 − z1〉+ 〈2x2, y2 − z2〉
= T (x1) + T (x2).

For x = 〈x, y, z〉 and c ∈ R we have

T (cx) = T (cx, cy, cz) = 〈2(cx), cy − cz〉 = c〈2x, y − z〉 = cT (x).

7. Let C be a convex set in a vector space V , and L : V → W a linear transformation. We
must show that

L(C) = {L(v) : v ∈ V }
is a convex set.

Let a,b ∈ L(C) be arbitrary and fix x ∈ `ab (the line segment joining a and b), so that
there exists some t ∈ [0, 1] such that x = (1− t)a + tb. Now, there exist some α,β ∈ C such
that L(α) = a and L(β) = b, and since C is convex the vector ξ = (1− t)α + tβ must be an
element of C. Observing that

L(ξ) = L((1− t)α + tβ) = (1− t)L(α) + tL(β) = (1− t)a + tb = x

for ξ ∈ C, we conclude that x ∈ L(C). Hence `ab ⊆ L(C) and L(C) is convex.

8a. Suppose that Ker(L) = {0}. Then dim(Ker(L)) = 0 and by Theorem 3 on the exam we
have

dim(V ) = dim(Ker(L)) + dim(Im(L)) = dim(Im(L)).

Since we’re given dim(V ) = dim(W ), it follows that dim(Im(L)) = dim(W ). Now, Im(L) is a
subspace of W , and dim(Im(L)) = dim(W ) implies that any basis for Im(L) must also be a
basis for W . Therefore Im(L) = W .1

8b. Suppose that Im(L) = W . Then by Theorem 3 on the exam we have

dim(V ) = dim(Ker(L)) + dim(Im(L)) = dim(Ker(L)) + dim(W )

1See Theorem 5.6 in chapter 3 of the book, or the last proposition in section 3.5 of the notes.
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= dim(Ker(L)) + dim(V ),

where the last equality makes use of the hypothesis dim(V ) = dim(W ). Subtracting dim(V )
from both sides of dim(V ) = dim(Ker(L)) + dim(V ) then yields dim(Ker(L)) = 0, which in
turn implies that Ker(L) = {0}.

9. An equivalent statement is the contrapositive: “If Ker(L) = {0}, then dim(V ) ≤ dim(W ).”
So, suppose that Ker(L) = {0}. Then dim(Ker(L)) = 0, and by Theorem 3 on the exam we
have dim(V ) = dim(Im(L)). Now, Im(L) is a subspace of W , so by Theorem 2 on the exam
we have dim(Im(L)) ≤ dim(W ). Therefore dim(V ) ≤ dim(W ).

10. The system can be cast in the form of a matrix equation Ax = 0, where

A =

[
2 1 −1
2 1 1

]
If S is the solution space of the system, then by an established theorem we have dim(S) =
dim(R3)− rank(A) = 3− rank(A). Now, the column vectors[

1
1

]
and

[
−1

1

]
of A are linearly independent, so rank(A) ≥ 2. On the other hand A has only two row vectors,
so rank(A) ≤ 2. Therefore rank(A) = 2 and we obtain dim(S) = 1.

Now to get a basis for S. From the first equation in the system we have z = 2x + y, which
when put into the second equation yields 2x + y + (2x + y) = 0 and then 2x + y = 0. Hence
z = 0 and y = −2x. This gives us S itself:

S = {〈x, y, z〉 : x ∈ R, y = −2x, z = 0} = {〈x,−2x, 0〉 : x ∈ R} = {x〈1,−2, 0〉 : x ∈ R}.

We can see that Span{〈1,−2, 0〉} = S, and so {〈1,−2, 0〉} is a basis for S.

11. Let r1 = 〈1, 1,−2, 3, 4, 5, 6〉 and r2 = 〈0, 0, 2, 1, 0, 7, 0〉. The subspace of R7 that is
orthogonal to both r1 and r2 is

S = {x ∈ R7 : r1 · x = 0 and r2 · x = 0}.

Indeed, if we define

A =

[
1 1 −2 3 4 5 6
0 0 2 1 0 7 0

]
then we find that

S = {x ∈ R7 : Ax = 0} = Nul(A).

By an established theorem we have dim(S) = dim(R7) − rank(A) = 7 − rank(A). Now, A
is already in row-echelon form, and so it should be clear that the row vectors of A, which
are r1 and r2, are linearly independent. Thus rank(A) = row-rank(A) = 2, and therefore
dim(S) = 7− 2 = 5.
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12. S is an arbitrary line in V , which is to say that S = {u + tv : t ∈ R} for some u,v ∈ V .
For L : V → W there are four cases: (1) L(u) = L(v) = 0; (2) L(u) = 0 and L(v) 6= 0;
(3) L(u) 6= 0 and L(v) = 0; and (4) L(u), L(v) 6= 0. Since L(u + tv) = L(u) + tL(v), we find
that cases (1) and (3) result in a point in W , and cases (2) and (4) result in a line in W .

13. By definition U⊥ = {x ∈ Rn : x · u = 0 for all u ∈ U}. Certainly 0 ∈ U⊥. It remains to
verify that U⊥ is closed under vector addition and scalar multiplication.

Suppose that x,y ∈ U⊥, so that x · u = 0 and y · u = 0 for all u ∈ U . Since for all u ∈ U
we have

(x + y) · u = x · u + y · u = 0 + 0 = 0,

it follows that x + y ∈ U⊥.
Now suppose that x ∈ U⊥ and c ∈ R. Then for any u ∈ U we have

(cx) · u = c(x · u) = c(0) = 0,

which implies that cx ∈ U⊥.
Therefore U⊥ is a subspace of Rn.


