MATH 260 ExaAM #2 KEY (SUMMER 2012)

1. We show that S = {x € R": a-x > ¢} is convex. For any u,v € S let x € {4y, the line
segment joining u and v. Then x = (1 — t)u + tv for some t € [0, 1]. Now, since u and v are
in S we havea-u>cand a-v > ¢, so that

a-x=(1—-ta-u+ta-v>(l—t)c+tc=c

and therefore x € S. This shows that ¢, C S, and since u,v € S are arbitrary it follows that
S is convex.

2. The proposition in section 3.4 of the notes (or in section 3.4 of the book) could be used here:
(a,b) and (c,d) are linearly independent if and only if ad — bc # 0. So, since (1)(5) — (2)(1) =
3 # 0, we conclude that (1,2) and (1,5) are linearly independent.

3. Suppose that

n

Zcivi = 0. (1)

=1

For any 1 < j < r we have
<Zcz~vi> v;=0-v;, = Zci(vi-vj):() = ¢(vj-v;)=0 = ¢lv;]*=0.
i=1 i=1

Now, since v; # 0 we have |v;| # 0, and so ¢;|v;|* = 0 implies ¢; = 0. We conclude that
¢y = -+ = ¢, = 0, which shows that (1) has only the trivial solution and therefore vy,..., v,
are linearly independent.

4. We get a matrix in row-echelon form using elementary row operations on the given matrix:

1 2 =3 1 2 =3 1 2 =3
—1 —2 3 —r1+ro—re, —4r1+rz—rs . 0 0 O T4 0 —3 8
4 8 —-12 —r1 ey “10 0 0 0o 0 0
1 -1 ) 0 -3 8 0o 0 0

Now it is clear that rank(A) = row-rank(A) = 2.

5. T takes (z,y) € R? and returns (u,v) € R? given by (u,v) = (3z,7y). Thus x = u/3 and
y = v/7, and so from z? + 3?> = 1 we obtain

U\2 v\2
)+ (3) =1
)+
In the uv-coordinate system we find that the image of the circle 22 + y?> = 1 under 7 is the
ellipse pictured below.



6. It is linear. For x; = (w1, y1, 21) and Xy = (T, ¥o, 29) in R® we have
T(x1 +xg) = T(w1 + 2,91 + Y2, 21 + 22) = (2(x1 + 22), (1 +32) — (21 + 22))
= (221 + 222, (1 — 21) + (y2 — 22)) = 221,91 — 21) + (222,92 — 22)
=T(x1) + T(x3).
For x = (z,y, 2z) and ¢ € R we have

T(cx) =T(cx,cy,cz) = (2(cx),cy — cz) = c¢(2x,y — z) = cT(x).

7. Let C be a convex set in a vector space V, and L : V — W a linear transformation. We
must show that

L(C)={L(v) :veV}
is a convex set.

Let a,b € L(C) be arbitrary and fix x € £, (the line segment joining a and b), so that
there exists some ¢ € [0, 1] such that x = (1 — t)a + tb. Now, there exist some a, 3 € C such
that L(a) = a and L(B) = b, and since C' is convex the vector & = (1 — t)a + t3 must be an
element of C'. Observing that

LE)=L((1-ta+tB)=(1—-t)L(a) +tL(B) = (1 —t)a+thb=x
for € € C, we conclude that x € L(C). Hence la, C L(C) and L(C) is convex.

8a. Suppose that Ker(L) = {0}. Then dim(Ker(L)) = 0 and by Theorem 3 on the exam we
have

dim(V') = dim(Ker(L)) + dim(Im(L)) = dim(Im(L)).
Since we're given dim(V) = dim(W), it follows that dim(Im(L)) = dim(WW). Now, Im(L) is a
subspace of W, and dim(Im(L)) = dim(W) implies that any basis for Im(L) must also be a
basis for W. Therefore Im(L) = W.!

8b. Suppose that Im(L) = W. Then by Theorem 3 on the exam we have
dim (V) = dim(Ker(L)) + dim(Im(L)) = dim(Ker(L)) 4+ dim (W)

1See Theorem 5.6 in chapter 3 of the book, or the last proposition in section 3.5 of the notes.



= dim(Ker(L)) + dim(V),

where the last equality makes use of the hypothesis dim(V') = dim (). Subtracting dim(V)
from both sides of dim(V') = dim(Ker(L)) + dim(V') then yields dim(Ker(L)) = 0, which in
turn implies that Ker(L) = {0}.

9. An equivalent statement is the contrapositive: “If Ker(L) = {0}, then dim(V') < dim(W).”
So, suppose that Ker(L) = {0}. Then dim(Ker(L)) = 0, and by Theorem 3 on the exam we
have dim(V') = dim(Im(L)). Now, Im(L) is a subspace of W, so by Theorem 2 on the exam
we have dim(Im(L)) < dim(W). Therefore dim(V') < dim(W).

10. The system can be cast in the form of a matrix equation Ax = 0, where
2 1 -1
A= [2 1 1]

If S is the solution space of the system, then by an established theorem we have dim(S) =
dim(R?) — rank(A) = 3 — rank(A). Now, the column vectors

g e [

of A are linearly independent, so rank(A) > 2. On the other hand A has only two row vectors,
so rank(A) < 2. Therefore rank(A) = 2 and we obtain dim(S) = 1.

Now to get a basis for S. From the first equation in the system we have z = 2z + y, which
when put into the second equation yields 2z + y + (2 4+ y) = 0 and then 2z + y = 0. Hence
z =0 and y = —2z. This gives us S itself:

S={{z,y,z) :x €R, y=—2x, 2=0} = {{z,—22,0) : x € R} = {z(1,-2,0) : x € R}.
We can see that Span{(1,—2,0)} = 5, and so {(1,—2,0)} is a basis for S.

11. Let r; = (1,1,-2,3,4,5,6) and o = (0,0,2,1,0,7,0). The subspace of R” that is
orthogonal to both r; and rs is

S={xcR :r;-x=0andr;-x =0}

Indeed, if we define

11
0 0

2 3 45 6

A= 21070
then we find that

S={xeR": Ax =0} = Nul(A).

By an established theorem we have dim(S) = dim(R") — rank(A) = 7 — rank(A). Now, A
is already in row-echelon form, and so it should be clear that the row vectors of A, which
are r; and ro, are linearly independent. Thus rank(A) = row-rank(A) = 2, and therefore
dim(S) =7 -2 = 5.
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12. S is an arbitrary line in V', which is to say that S = {u+tv :t € R} for some u,v e V.
For L : V. — W there are four cases: (1) L(u) = L(v) = 0; (2) L(u) = 0 and L(v) # O;
(3) L(u) # 0 and L(v) = 0; and (4) L(u), L(v) # 0. Since L(u+tv) = L(u) + tL(v), we find
that cases (1) and (3) result in a point in W, and cases (2) and (4) result in a line in WW.

13. By definition Ut = {x € R" : x-u =0 for all u € U}. Certainly 0 € U*. It remains to
verify that U+ is closed under vector addition and scalar multiplication.
Suppose that x,y € U+, so that x-u=0and y-u =0 for all u € U. Since for allu € U
we have
(x+y)-u=x-u+y-u=0+0=0,
it follows that x +y € U+,
Now suppose that x € UL and ¢ € R. Then for any u € U we have

(ex)-u=c(x-u)=1c(0) =0,

which implies that cx € U*.
Therefore U+ is a subspace of R™.



