
Math 260 Exam #1 Key (Summer 2012)

1. Quite trivially we have

3p = 3(3,−1, 8) = (9,−3, 24),

p+ q = (3,−1, 8) + (−2,−9, 0) = (1,−10, 8),

p− 2q = (3,−1, 8)− 2(−2,−9, 0) = (7, 17, 8).

2. We have #„rp ∼ #„qs since p − r = (−2, 0) − (−11,−6) = (9, 6) = (17, 1) − (8,−5) = s − q.
Also #„pr ∼ #„sq.
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3. Since u ∈ Rn we have u = 〈u1, . . . , un〉. For each 1 ≤ i ≤ n let ei = 〈0, . . . , 1, . . . , 0〉, the
vector with ith coordinate 1 and all other coordinates 0. Since u is orthogonal to all vectors in
Rn, we have

ui = (u1)(0) + (u2)(0) + · · ·+ (ui)(1) + · · ·+ (un)(0) = u · ei = 0

for all i. Thus u = 0.

4a. |u| =
√

22 + (−1)2 + 52 =
√

30 and |v| =
√

(−1)2 + 12 + 12 =
√

3.

4b. Since u · v = (2)(−1) + (−1)(1) + (5)(1) = 2 and v · v = |v|2 = (
√

3)2 = 3, we have
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)
v =

2

3
〈−1, 1, 1〉 =

〈
−2

3
,
2

3
,
2

3

〉
.

4c. We have

cos θ =
u · v
|u||v|

=
2√

30
√

3
=

2

3
√

10
⇒ θ = cos−1

(
2

3
√

10

)
≈ 77.8◦.

5a. The easiest 10 points you could hope for:

AT =

 2 −1
−3 4

0 6


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5b. We have

AB =

[
−14 7

25 −55

]

6. We have A2 = AA, A3 = AA2, A4 = AA3, so

A2 =

1 0 0
0 4 0
0 0 9

 , A3 =

1 0 0
0 2 0
0 0 3

1 0 0
0 4 0
0 0 9

 =

1 0 0
0 8 0
0 0 27

 , A4 =

1 0 0
0 16 0
0 0 81

 .

7. We must find a 2× 2 matrix with entries a, b, c, and d such that[
cos θ − sin θ
sin θ cos θ

][
a b
c d

]
=

[
a cos θ − c sin θ b cos θ − d sin θ
a sin θ + c cos θ b sin θ + d cos θ

]
=

[
1 0
0 1

]
.

To get a cos θ− c sin θ = 1, let a = cos θ and c = − sin θ; to get b cos θ− d sin θ = 0 let b = sin θ
and d = cos θ. It can be seen that these choices work, and moreover[

a b
c d

][
cos θ − sin θ
sin θ cos θ

]
=

[
1 0
0 1

]
also holds for these choices. Thus, the inverse of Rθ is

R−1θ =

[
cos θ sin θ
− sin θ cos θ

]
.

8. From the second equation we have y = −x. Putting this into the first and third equations
gives 11x + 3z = 0 and x + 6z = 0. From the latter equation comes x = −6z, which when
put into the former equation yields 11(−6z) + 3z = 0, and thus z = 0. Since z = 0, we get
x = −6(0) = 0, and then y = −0 = 0. That is, x = y = z = 0 is the only solution.

9. Call the matrix A. Then,

A
r1↔r2−−−→

2 1 −4 3
0 1 3 −2
2 3 2 −1

 −r1+r3→r3−−−−−−−→

2 1 −4 3
0 1 3 −2
0 2 6 −4

 −2r2+r3→r3−−−−−−−→

2 1 −4 3
0 1 3 −2
0 0 0 0

 .

10. Letting A be the matrix, we have 2 4 3 1 0 0
−1 3 0 0 1 0

0 2 1 0 0 1

 r2↔r1−−−−→
−r1→r1

1 −3 0 0 −1 0
2 4 3 1 0 0
0 2 1 0 0 1

 −2r1+r2→r2−−−−−−−→

1 −3 0 0 −1 0
0 10 3 1 2 0
0 2 1 0 0 1


r2↔r3−−−→

1 −3 0 0 −1 0
0 2 1 0 0 1
0 10 3 1 2 0

 −5r2+r3→r3−−−−−−−→

1 −3 0 0 −1 0
0 2 1 0 0 1
0 0 −2 1 2 −5

 1
2
r2→r2−−−−→



31 −3 0 0 −1 0
0 1 1

2
0 0 1

2
0 0 −2 1 2 −5

 3r2+r1→r1−−−−−−→

1 0 3
2

0 −1 3
2

0 1 1
2

0 0 1
2

0 0 −2 1 2 −5

 1
4
r3+r2→r2−−−−−−→

3
4
r3+r1→r11 0 0 3

4
1
2
−9

4

0 1 0 1
4

1
2
−3

4
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 − 1
2
r3→r3−−−−−→

1 0 0 3
4

1
2
−9

4

0 1 0 1
4

1
2
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4

0 0 1 −1
2
−1 5

2

.
Thus

A−1 =

 3
4

1
2
−9

4
1
4

1
2
−3

4

−1
2
−1 5

2



11. V is not a vector space: it lacks O, so A3 fails. Define matrices

A =

[
0 0
1 0

]
and B =

[
2 0
1 3

]
,

both of which are in V . A4 and the closure property of scalar multiplication fail since −A is
not in V . The closure property of addition fails since A + B /∈ V .

12. Let W = {(x, y) : x+ 4y = 0}. We show that W is a subspace of R2. Since 0 + 4(0) = 0,
we have (0, 0) ∈ W . Next, if (a, b), (c, d) ∈ W so that a + 4b = 0 and c + 4d = 0, it’s clear to
see that (a+ c, b+ d) ∈ W since

(a+ c) + 4(b+ d) = (a+ 4b) + (c+ 4d) = 0 + 0 = 0.

Finally, s(a, b) ∈ W for any s ∈ R since s(a, b) = (sa, sb), and sa+4(sb) = s(a+4b) = s(0) = 0.
Therefore W is a subspace.

13. By definition U + W = {u + w : u ∈ U and w ∈ W}. Since U and W are subspaces we
have 0 ∈ U and 0 ∈ W , and therefore 0 = 0 + 0 ∈ U +W .

Let a ∈ R, and suppose that x ∈ U +W . Then x = u+w for some u ∈ U and w ∈ W , and
since U and W are subspaces we also have au ∈ U and aw ∈ W . Now we find that ax ∈ U+W
since ax = a(u + w) = au + aw.

Finally, let x,y ∈ U + W . Then x = u1 + w1 and y = u2 + w2 for some u1,u2 ∈ U and
w1,w2 ∈ W . Now

x + y = (u1 + w1) + (u2 + w2) = (u1 + u2) + (w1 + w2),

and since u1 + u2 ∈ U and w1 + w2 ∈ W it follows that x + y ∈ U +W .
Therefore U +W is a subspace of V .

14a. Let 〈a, b, c〉 ∈ R3. We attempt to find scalars x, y, z ∈ R such that

x〈1, 1, 1〉+ y〈2, 2, 0〉+ z〈3, 0, 0〉 = 〈a, b, c〉.
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This yields the system {
x + 2y + 3z = a
x + 2y = b
x = c

which indeed has a solution:

(x, y, z) =

(
c,
b− c

2
,
a− b

3

)
.

Thus every vector in R3 is expressible as a linear combination of v1, v2, and v3, which shows
that the set {v1,v2,v3} spans R3.

14b. Let 〈a, b, c〉 ∈ R3. We attempt to find scalars x, y, z ∈ R such that

x〈2,−1, 3〉+ y〈4, 1, 2〉+ z〈8,−1, 8〉 = 〈a, b, c〉.
This yields the system {

2x + 4y + 8z = a
−x + y − z = b
3x + 2y + 8z = c

This can be cast as an augmented matrix and manipulated using elementary row operations: 2 4 8 a
−1 1 −1 b

3 2 8 c

 ∼
−1 1 −1 b

2 4 8 a
3 2 8 c

 ∼
−1 1 −1 b

0 6 6 2b+ a
0 5 5 3b+ c


∼

1 −1 1 −b
0 1 1 2b+a

6

0 5 5 3b+ c

 ∼
1 −1 1 −b

0 1 1 2b+a
6

0 0 0 3b+ c− 5
(
2b+a
6

)


We see that in order for 〈a, b, c〉 to be expressed as a linear combination of v1, v2, and v3, we
need a, b, and c such that

3b+ c− 5

(
2b+ a

6

)
= 0,

or

−5

6
a+

4

3
b+ c = 0.

This leads to 1 = 0 if we choose 〈a, b, c〉 to be 〈0, 0, 1〉, for instance. That is, we cannot express
〈0, 0, 1〉 (among many other vectors) as a linear combination of v1, v2, and v3. We conclude
that {v1,v2,v3} does not span R3.


