
Math 260 Exam #3 Key (Spring 2014)

1 Two vectors belonging to U are

u =

1
0
0

 and v =

0
1
1

.
However the vector u + v does not belong to U . Since U is not closed under vector addition,
it is not a subspace of R3.

2a Suppose x,y ∈ W1 ∩W2 and c is a scalar. Since x,y ∈ W1 and W1 is a subspace, we
have cx ∈ W1 and x + y ∈ W1. Since x,y ∈ W2 and W2 is a subspace, we have cx ∈ W2 and
x+y ∈ W2. Therefore cx ∈ W1∩W2 and x+y ∈ W1∩W2. We have now shown that W1∩W2

is closed under scalar multiplication and vector addition, and therefore W1 ∩W2 is a subspace.

2b To see that W1 ∪W2 is not necessarily a subspace of V , we consider a counterexample.
Let V = R2, and define subspaces W1,W2 ⊆ R2 thus:

W1 =

{[
x
0

]
: x ∈ R

}
and W2 =

{[
0
y

]
: y ∈ R

}
.

Let

u =

[
1
0

]
and v =

[
0
1

]
.

Since u ∈ W1 and v ∈ W2, we have u,v ∈ W1 ∪W2. But:

u + v =

[
1
1

]
/∈ W1 ∪W2,

so that W1 ∪W2 is seen to not be closed under vector addition, and therefore W1 ∪W2 is not
a subspace of R2.

However, in general, if we’re given either W1 ⊆ W2 or W2 ⊆ W1, then W1∪W2 equals either
W2 or W1, respectively, and therefore W1 ∪W2 is a subspace of V .

3 Let

v =

ab
c

,
and find x, y, z, w ∈ R such that1

2
3

x +

 1
0
−1

y +

0
1
1

z +

1
1
0

w =

ab
c

,
which gives rise to a system of equation with augmented matrix1 1 0 1 a

2 0 1 1 b
3 −1 1 0 c

∼
1 1 0 1 a

0 2 −1 1 2a− b
0 0 1 1 2b− a− c





2

From this we get

x =
a− b + c

2
, y =

a + b− c

2
− w, z = 2b− a− c− w,

where w may be any real number. This shows that S spans R3, and moreover any v ∈ R3 can
be written as a linear combination of vectors in S in infinitely many ways (one for each value
of w).

ANOTHER METHOD: let

u1 =

1
2
3

, u2 =

0
1
1

, u3 =

1
1
0

, u4 =

 1
0
−1

, A =

1 0 1
2 1 1
3 1 0

.
We have det(A) = −2 6= 0, so the Invertible Matrix Theorem implies that rank(A) = 3, which
is to say the column vectors u1,u2,u3 of A are linearly independent and therefore form a basis
for R3. Since S = {u1,u2,u3,u4} contains the column vectors of A, it immediately follows
that Span(S) = R3. Now, for any a ∈ R, since

v − au4 ∈ R3 and Span{u1,u2,u3} = R3,

there exist c1, c2, c3 ∈ R such that

c1u1 + c2u2 + c3u3 = v − au4,

and therefore
v = c1u1 + c2u2 + c3u3 + au4.

Of course a is arbitrary, which shows that v can be written as a linear combination of vectors
in S in infinitely many ways.

4 We can show the vectors are linearly independent by showing they form a basis for R3.
Define the matrix A = [x1 x2 x3], which is the matrix with x1, x2, and x3 as its column
vectors. In the textbook there is a theorem that implies that the column vectors of A are a
basis for R3 if and only if det(A) 6= 0. We have

det(A) =

∣∣∣∣∣∣
2 3 −2
1 4 3
−1 6 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 −5 −8
1 4 3
0 10 5

∣∣∣∣∣∣ = (−1)2+1(1)

∣∣∣∣ −5 −8
10 5

∣∣∣∣ = −55 6= 0,

and so x1, x2, and x3 are linearly independent.
Solving a system, we find that

−122

55
x1 +

38

55
x2 −

2

11
x3 =

−2
0
6



5 We have z = 2y − x, so the plane consists of points (x, y, z) such thatxy
z

=

 x
y

2y − x

=

 1
0
−1

x +

0
1
2

y.



3

It is clear that the vectors

v1 =

 1
0
−1

 and v2 =

0
1
2


correspond to points that lie on the plane, and moreover they are linearly independent since
the matrix  1 0

0 1
−1 2


has rank 2. (The first two row vectors are linearly independent, so the matrix has rank at least
2; but the rank cannot be greater than 2 since the matrix has only two column vectors.) Since
the set {v1,v2} spans the plane (the set {sv1 + tv2 : s, t ∈ R} is precisely the solution set of
the equation x− 2y + z = 0), we conclude that {v1,v2} is a basis for the plane.


