MatH 260 ExaM #3 KEY (SPRING 2014)

1 Two vectors belonging to U are

1 0
u=|0 and v=|1
0 1

However the vector u 4 v does not belong to U. Since U is not closed under vector addition,
it is not a subspace of R3.

2a Suppose x,y € Wi N W, and ¢ is a scalar. Since x,y € W; and W is a subspace, we
have cx € W; and x +y € Wj. Since x,y € W, and W is a subspace, we have cx € W5 and
x+y € Wy, Therefore cx € Wi NWy and x+y € Wi NW,. We have now shown that W7 N W,
is closed under scalar multiplication and vector addition, and therefore W, N W is a subspace.

2b To see that W7 U W, is not necessarily a subspace of V', we consider a counterexample.
Let V = R?, and define subspaces Wi, Wy C R? thus:
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Since u € W and v € W5, we have u,v € W; U W,. But:

Let

u+V:|i1:|¢W1UW2,

so that W7 U W5 is seen to not be closed under vector addition, and therefore Wy U W5 is not
a subspace of R2.

However, in general, if we're given either W, C W5 or Wy C Wy, then W1 U W, equals either
Wy or Wy, respectively, and therefore W; U W is a subspace of V.

3 Let
a
v=|b],
c
and find z,y, z, w € R such that
1 1 0 1 a
2{x+| Oly+|1l|z+|1|lw=]|b],
3 -1 1 0 c

which gives rise to a system of equation with augmented matrix

1 1 0 1]a 11 0 1|a
2 01 1]b[~[0 2 —1 1|2a-0b
3 =1 1 0] ¢ 00 1 1| 2b—a—c



From this we get

a—b+c a+b—c
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where w may be any real number. This shows that S spans R3, and moreover any v € R3 can
be written as a linear combination of vectors in S in infinitely many ways (one for each value

—w, z=2b—a—c—w,

of w).
ANOTHER METHOD: let
1 0 1 1 1 01
u =2, w=|1|, uz=|1|, wy= 0f, A=(2 11
3 1 0 -1 310

We have det(A) = —2 # 0, so the Invertible Matrix Theorem implies that rank(A) = 3, which
is to say the column vectors uy, us, uz of A are linearly independent and therefore form a basis
for R?. Since S = {u;,uy,u3,uy} contains the column vectors of A, it immediately follows
that Span(S) = R3. Now, for any a € R, since

—~

v—auy € R* and Span{uj,u,, uz} =R
there exist ¢y, co, c3 € R such that
ciuy + Coug + C3U3z = V — aly,
and therefore
V = ciuy + Ccus + c3us + auy.

Of course a is arbitrary, which shows that v can be written as a linear combination of vectors
in S in infinitely many ways.

4 We can show the vectors are linearly independent by showing they form a basis for R3.
Define the matrix A = [x; X3 x3|, which is the matrix with x;, x2, and x5 as its column
vectors. In the textbook there is a theorem that implies that the column vectors of A are a
basis for R? if and only if det(A) # 0. We have

2 3 -2 0 -5 -8
det(A)=| 1 4 3|=|1 4 3 :(—1)2“(1)‘
-1 6 2 0 10 5

2 _8’:—557%,

10 5

and so X1, X9, and x3 are linearly independent.
Solving a system, we find that

122 38 2 _g
__X _X ——X _—
55 1 55T 1100 6

5 We have z = 2y — x, so the plane consists of points (z,y, z) such that

x T 1 0
yl= Y = Olz+|1]y.
z 2y —x —1 2



It is clear that the vectors

1 0
vy = 0 and ve =11
-1 2

correspond to points that lie on the plane, and moreover they are linearly independent since
the matrix

10
0 1

-1 2

has rank 2. (The first two row vectors are linearly independent, so the matrix has rank at least
2; but the rank cannot be greater than 2 since the matrix has only two column vectors.) Since
the set {vy, va} spans the plane (the set {svy; + tvy : s,t € R} is precisely the solution set of
the equation z — 2y + z = 0), we conclude that {vy, vo} is a basis for the plane.



