MATH 260 ExaM #2 KEY (SPRING 2014)

1 We employ the same sequence of elementary row operations on both A and I3, as follows.
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To solve Ax = b, the idea is to simply use A~
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2 Let C denote the matrix. Then
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3 Here Ax = b with
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and by Cramer’s Rule,
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The solution is therefore (z,y,2) = (&, — 5, 5)-

4 A is not invertible if and only if det(A) = 0; that is, we need

‘7—>\ —-15

0 4[N N) = (15)(2) =N = 3A+2=0,

which leads us to conclude that A is not invertible if and only if A = 1, 2.

5 The ranks of row-equivalent matrices are equal, and the rank of a matrix is easy to discern
if it is in row-echelon form. Thus the way forward is to perform a succession of elementary row
operations on B to obtain a matrix in just such a form:
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There are three nonzero rows in the row-echelon matrix B’; so rank(B’) = 3, and therefore
rank(B) = 3 also.

Now we determine the null space of B. By definition
Nul(B) = {x : Bx = 0}.

Since B’ is row-equivalent to B, the system of equations given by the matrix equation B'x = 0
is equivalent to the system Bx = 0, which is to say they have the same solution set. In fact we



may go further:
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The system B”x = 0 has the same solution set as Bx = 0, meaning Nul(B) = Nul(B").
Unpacking B”"x = 0 gives
T+ rs— x5=20
{ To + 2%5 =0

$3—JI4+3$5:0

Letting x4 = s and x5 = t, we obtain z; = —s + ¢, zo = —2t, and 3 = s — 3t. Hence
—s+t -1 1
—2t 0 —2
NulB)=<|s—=3t|:steRy=<s| 1|+t|-3|:stelR
S 1 0
t 0 1

As for the range of B, it is the set of all linear combinations of the column vectors of B, or
in other words the span of the column vectors:

1 0 1 0 2
2 1 1 1 3
Ran(B) = Span sl L2112l |o
0 3 -2 2 0

6 Ax = b has a unique solution if and only if A is invertible, and A is invertible if and only
if det(A) # 0. Now,

1 20
det(A)£0 < |5 1 A|£0 & A£3.
1 -1 1

Thus, Ax = b has a unique solution for any b = [2 7 u]" if and only if A # 3, no matter what
the value of p is.

In order to consider the possibility that Ax = b has no solution, we must first set A = 3.
Now we perform elementary row operations on the augmented of the resultant system:

1 2 012 1 20 2 1 20 2
5 1 3|7M—|0-9 3| -3 |—1]0-9 3] -3
1 =1 1| p 0 -3 1| pu—2 0 00| p—1

From this we see that the system will have no solution if i # 1; that is, the system is inconsistent
if and only if A =3, u # 1.

Finally, we see that the system will have infinitely many solutions if © = 1; that is, the
system is dependent if and only if A =3 and p = 1.



