1 Find a and b such that

$$
a(1,1)+b(-1,3)=(0,1)
$$

so $a-b=0$ and $a+3 b=1$. We find $a=b=1 / 4$. Now, by linearity,

$$
L(0,1)=L\left(\frac{1}{4}(1,1)+\frac{1}{4}(-1,3)\right)=\frac{1}{4} L(1,1)+\frac{1}{4} L(-1,3)=\frac{1}{4}(2,-1)+\frac{1}{4}(1,2)=\left(\frac{3}{4}, \frac{1}{4}\right)
$$

2 Suppose $\sum_{k=1}^{n} c_{k} \mathbf{v}_{k}=\mathbf{0}$. Then

$$
\mathbf{0}=L(\mathbf{0})=L\left(\sum_{k=1}^{n} c_{k} \mathbf{v}_{k}\right)=\sum_{k=1}^{n} c_{k} L\left(\mathbf{v}_{k}\right)=\sum_{k=1}^{n} c_{k} \mathbf{w}_{k}
$$

by linearity properties, and since $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ are linearly independent we conclude that $c_{k}=0$ for all k.

3 By the Rank-Nullity Theorem, $\operatorname{dim}(\operatorname{Img} L)+\operatorname{dim}(\operatorname{Ker} L)=\operatorname{dim} V$. Since $\operatorname{Img} L$ is a subspace of W, $\operatorname{dim}(\operatorname{Img} L) \leq \operatorname{dim} W$. Thus $\operatorname{dim}(\operatorname{Img} L)<\operatorname{dim} V$, and it follows that $\operatorname{dim}(\operatorname{Ker} L)>0$. That is, $\operatorname{dim}(\operatorname{Ker} L) \geq 1$, and we conclude that $\operatorname{Ker} L \neq\{\mathbf{0}\}$.

4 Let

$$
\mathbf{v}_{1}^{\top}=[1,1,-2,3,4], \quad \mathbf{v}_{2}^{\top}=[1,0,0,2,0,], \quad \mathbf{v}_{3}^{\top}=[0,1,0,1,0]
$$

and let \mathbf{A} be the 3×5 matrix with row vectors $\mathbf{v}_{1}^{\top}, \mathbf{v}_{2}^{\top}, \mathbf{v}_{3}^{\top}$. Three column vectors of \mathbf{A} are

$$
\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right],
$$

which are linearly independent in \mathbb{R}^{3}, and so $\operatorname{rank} \mathbf{A}=3$. Let U be the subspace in question, so

$$
U=\left\{\mathbf{x} \in \mathbb{R}^{5}: \mathbf{v}_{1} \cdot \mathbf{x}=0, \mathbf{v}_{2} \cdot \mathbf{x}=0, \mathbf{v}_{3} \cdot \mathbf{x}=0\right\}=\left\{\mathbf{x} \in \mathbb{R}^{5}: \mathbf{A} \mathbf{x}=\mathbf{0}\right\}
$$

By the Matrix Rank-Nullity Theorem

$$
\operatorname{dim} U=\operatorname{dim}(\operatorname{Nul} \mathbf{A})=\text { nullity } \mathbf{A}=\operatorname{dim} \mathbb{R}^{5}-\operatorname{rank} \mathbf{A}=5-3=2
$$

5 If \mathcal{E}_{4} and \mathcal{E}_{3} are the standard bases for \mathbb{R}^{4} and \mathbb{R}^{3}, respectively, then

$$
[L]_{\mathcal{E}_{4} \mathcal{E}_{3}}=\left[\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}_{3}} \cdots \cdots \quad\left[L\left(\mathbf{e}_{4}\right)\right]_{\mathcal{E}_{3}}\right]=\left[\begin{array}{rrrr}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right]
$$

6 Let $\mathbf{v} \in V$. Now, $(P \circ P)(\mathbf{v})=P(\mathbf{v})$ shows that $P(\mathbf{v}) \in \operatorname{Img} P$. Also

$$
P(\mathbf{v}-P(\mathbf{v}))=P(\mathbf{v})-P(P(\mathbf{v}))=P(\mathbf{v})-P(\mathbf{v})=\mathbf{0}
$$

which shows $\mathbf{v}-P(\mathbf{v}) \in \operatorname{Ker} P$. Thus

$$
\mathbf{v}=[\mathbf{v}-P(\mathbf{v})]+P(\mathbf{v}) \in \operatorname{Ker} P+\operatorname{Img} P
$$

so that $V \subseteq \operatorname{Ker} P+\operatorname{Img} P$. That $\operatorname{Ker} P+\operatorname{Img} P \subseteq V$ follows from the usual closure properties of a vector space, and therefore $V=\operatorname{Ker} P+\operatorname{Img} P$.

7 Suppose $L(x, y)=(0,0)$. Then $2 x+y=0$ and $3 x-5 y=0$, which are only satisfied if $x=y=0$. Thus $\operatorname{Ker} L=\{(0,0)\}$, which implies L is injective, hence surjective, hence bijective, and therefore invertible.

8 Setting $\mathcal{B}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ and $\mathcal{C}=\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$, the transition matrix is $\mathbf{I}_{\mathcal{B C}}=\left[\left[\mathbf{v}_{1}\right]_{\mathcal{C}} \quad\left[\mathbf{v}_{2}\right]_{\mathcal{C}}\right]$. Here $\left[\mathbf{v}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{ll}a & b\end{array}\right]^{\top}$ for a, b such that $a \mathbf{w}_{1}+b \mathbf{w}_{2}=\mathbf{v}_{1}$, and $\left[\mathbf{v}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{ll}c & d\end{array}\right]^{\top}$ for c, d such that $c \mathbf{w}_{1}+d \mathbf{w}_{2}=\mathbf{v}_{2}$. Solving the two systems of equations

$$
\left\{\begin{array} { r }
{ a + b = 1 } \\
{ - a + b = 1 }
\end{array} \quad \left\{\begin{array}{r}
c+d=2 \\
-c+d=0
\end{array}\right.\right.
$$

yields $a=0, b=1, c=1$, and $d=1$, and so

$$
\mathbf{I}_{\mathcal{B C}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

