
Math 260 Exam #2 Key (Fall 2017)

1 If xk − 2yk + 3zk = 0 for k = 1, 2, then

(x1 + x2)− 2(y1 + y2) + 3(z1 + z2) = (x1 − 2y1 + 3z1) + (x2 − 2y2 + 3z2) = 0.

This shows that if v1 = [x1, y1, z1] and v2 = [x2, y2, z2] belong to the set, then so does

v1 + v2 = [x1 + x2, y1 + y2, z1 + z2].

Also if x− 2y + 3z = 0, then

(cx)− 2(cy) + 3(cz) = 0,

which shows that if v = [x, y, z] belongs so the set, then so does cv = [cx, cy, cz]. The set
is therefore closed under vector addition and scalar multiplication, and since [0, 0, 0] clearly
belongs to the set, the set is indeed a subspace of R3.

2 Note that [2, 1] and [2,−1] belong to the set, but [2, 1] + [2,−1] = [4, 0] does not since
4− 2(0)2 = 4 6= 0. The set is not closed under vector addition and therefore is not a subspace
of R2.

3 By definition

W = {w ∈ Rn : w · v = 0 for all v ∈ V }.
Clearly 0 ∈ W . Suppose w1,w2 ∈ W , and let v ∈ V be arbitrary. Then

(w1 + w2) · v = w1 · v + w2 · v = 0 + 0 = 0,

and so w1 + w2 ∈ W . So W is closed under vector addition. Next, for any w ∈ W and c ∈ R
we find, for any v ∈ V , that (cw) · v = c(w · v) = (c)(0) = 0, and hence cw ∈ W . So W is
closed under scalar multiplication. Therefore W is a subspace of Rn.

4 Suppose

x1[1, 2, 0] + x2[1, 3,−1] + x3[−1, 1, 1] = [0, 0, 0].

Then we obtain the system {
x1 + x2 − x3 = 0

2x1 + 3x2 + x3 = 0
−x2 + x3 = 0

The last equation gives x3 = x2, which can be used to go on to find that x1 = x2 = x3 = 0.
Therefore the vectors are linearly independent.

5 We must show that P = {t1v1 + t2v2 : t1, t2 ∈ [0, 1]} is a convex set. Suppose p,q ∈ P , so

p = s1v1 + s2v2 and q = t1v1 + t2v2

for s1, s2, t1, t2 ∈ [0, 1]. Fix x ∈ [p,q], so for some u ∈ [0, 1] we have

x = (1− u)p + uq = (1− u)(s1v1 + s2v2) + u(t1v1 + t2v2).

Rearranging gives

x = [(1− u)s1 + ut1]v1 + [(1− u)s2 + ut2]v2,

and since 0 ≤ s1, s2, t1, t2 ≤ 1 it follows that

0 ≤ (1− u)s1 + ut1 ≤ (1− u)(1) + (u)(1) = (1− u) + u = 1
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and similarly 0 ≤ (1−u)s2 +ut2 ≤ 1. Hence x ∈ P , which shows that [p,q] ⊆ P , and therefore
P is convex.

6 Find x1 and x2 such that c1u1 + c2u2 = x, This results in the system{
2x1 − x2 = 4
x1 =−3

Solving yields x1 = −3 and x2 = −10. If we define B = {u1,u2}, then the coordinates of x with
respect to u1,u2 are otherwise known as the B-coordinates of x, denoted by [x]B = [−3,−10].

7 We have x = 2y − 3z, so (letting s = y and t = z) we obtain

V =


2y − 3z

y
z

 : y, z ∈ R

 =

s

2
1
0

+ t

−3
0
1

 : s, t ∈ R

 = Span


2

1
0

,
−3

0
1

 .

The vectors in this spanning set for V can be shown to be linearly independent, and therefore
a basis for V is 

2
1
0

,
−3

0
1

 .

8 Let f(x) = et and g(t) = ln t. Suppose c1f + c2g = 0 on (0,∞). Then in particular we have
c1f(1) + c2g(1) = 0 and c1f(2) + c2g(2) = 0. The first equation gives c1e + c2 ln(1) = 0, and
hence c1 = 0. The second equation then becomes c2g(2) = 0, or c2 ln 2 = 0, and hence c2 = 0.
Therefore f and g are linearly independent on (0,∞).

9 With the elementary row operations −3r1 + r2, r1 + r3, and −3r1 + r4 we obtain

M ∼


1 −2 0 4
0 7 1 −12
0 0 0 0
0 0 0 0

.
The rank of M is equal to the number of pivots in a row-equivalent row-echelon form, and so
rank(M) = 2.

10 In terms of column vectors we have A = [a1 · · · an] and B = [b1 · · · br]. Now, since

AB = [Ab1 · · · Abr],

the `th column vector of AB is Ab`. Set b` = [b1` · · · bn`]>. Then, letting aij denote the
ij-entry of A in general,

Ab` =


∑n

j=1 a1jbj`
...∑n

j=1 amjbj`

=
n∑

j=1

 a1jbj`
...

amjbj`

=
n∑

j=1

bj`

 a1j
...

amj

=
∑
j=1

bj`aj.
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Thus each of the column vectors of AB is a linear combination of the column vectors of A,
so that the column space of AB is a subset of the column space of A: Col(AB) ⊆ Col(A).
Therefore

rank(AB) = dim[Col(AB)] ≤ dim[Col(A)] = rank(A).

11 The image of the line x = c under F is

{F (c, y) : y ∈ R} = {e−c[sin y, cos y] : y ∈ R}.
Letting u = e−c sin y and v = e−c cos y, we have u2 + v2 = e−c. Thus the image of x = c under
F is a circle with center (0, 0) and radius e−c.

Next, the image of y = d under F is

{F (x, d) : x ∈ R} = {e−x[sin d, cos d] : x ∈ R}.
The range of e−x for x ∈ R is (0,∞), and so the image of y = d under F is equivalently written
as

{x[sin d, cos d] : x > 0},
and since [sin d, cos d] 6= [0, 0], we find the image to be an open ray emanating from the origin.


