NAME:

- 1. 10 pts. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping such that L(1,1)=(2,-1) and L(-1,3)=(1,2). Find L(0,1).
- 2. 10 pts. Let V, W be vector spaces and $L: V \to W$ a linear mapping. Suppose $\mathbf{w}_1, \dots, \mathbf{w}_n \in W$ are linearly independent and $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ are such that $L(\mathbf{v}_k) = \mathbf{w}_k$ for $1 \le k \le n$. Show that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.
- 3. 10 pts. Let $L: V \to W$ be a linear mapping. Assume dim $V > \dim W$. Prove that the kernel of L is not $\{0\}$.
- 4. $\boxed{\text{10 pts.}}$ Find the dimension of the subspace of \mathbb{R}^5 orthogonal to the vectors (1,1,-2,3,4), (1,0,0,2,0), (0,1,0,1,0).
- 5. 10 pts. Find the matrix corresponding to the linear mapping $L: \mathbb{R}^4 \to \mathbb{R}^3$ given by

$$L([x_1, x_2, x_3, x_4]^{\top}) = [2x_3, 0, -2x_1]^{\top}$$

with respect to the standard bases.

- 6. 10 pts. Let $P: V \to V$ be a linear map such that $P \circ P = P$. Show that V = Ker(P) + Img(P).
- 7. 10 pts. Let $L: \mathbb{R}^{1\times 2} \to \mathbb{R}^{1\times 2}$ be the linear transformation defined by

$$L(x,y) = [2x + y, 3x - 5y].$$

Show that L is invertible.

8. | 10 pts. | The ordered sets

$$\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \end{pmatrix}$$
 and $\mathcal{C} = \begin{pmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$

are bases for \mathbb{R}^2 . Find the change of basis matrix $\mathbf{I}_{\mathcal{BC}}$ (a.k.a. transition matrix) for changing from the basis \mathcal{B} to the basis \mathcal{C} .