1. 10 pts. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping such that $L(1,1)=(2,-1)$ and $L(-1,3)=(1,2)$. Find $L(0,1)$.
2. 10 pts . Let V, W be vector spaces and $L: V \rightarrow W$ a linear mapping. Suppose $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \in W$ are linearly independent and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ are such that $L\left(\mathbf{v}_{k}\right)=\mathbf{w}_{k}$ for $1 \leq k \leq n$. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
3. 10 pts. Let $L: V \rightarrow W$ be a linear mapping. Assume $\operatorname{dim} V>\operatorname{dim} W$. Prove that the kernel of L is not $\{0\}$.
4. 10 pts. Find the dimension of the subspace of \mathbb{R}^{5} orthogonal to the vectors $(1,1,-2,3,4),(1,0,0,2,0)$, ($0,1,0,1,0$).
5. 10 pts. Find the matrix corresponding to the linear mapping $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ given by

$$
L\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top}\right)=\left[2 x_{3}, 0,-2 x_{1}\right]^{\top}
$$

with respect to the standard bases.
6. 10 pts. Let $P: V \rightarrow V$ be a linear map such that $P \circ P=P$. Show that $V=\operatorname{Ker}(P)+\operatorname{Img}(P)$.
7. 10 pts . Let $L: \mathbb{R}^{1 \times 2} \rightarrow \mathbb{R}^{1 \times 2}$ be the linear transformation defined by

$$
L(x, y)=[2 x+y, 3 x-5 y] .
$$

Show that L is invertible.
8. 10 pts . The ordered sets

$$
\mathcal{B}=\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right) \quad \text { and } \quad \mathcal{C}=\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

are bases for \mathbb{R}^{2}. Find the change of basis matrix $\mathbf{I}_{\mathcal{B C}}$ (a.k.a. transition matrix) for changing from the basis \mathcal{B} to the basis \mathcal{C}.

