Math 260 Fall 2018 Exam 2

NAME:

- 1. 10 pts. Prove or disprove that the set of all [x, y, z] such that x 2y = 4z is a subspace of \mathbb{R}^3 .
- 2. 10 pts. Let V be a subspace of \mathbb{R}^n , and let W be the set of vectors in \mathbb{R}^n which are perpendicular to every vector in V. Show that W is a subspace of \mathbb{R}^n .
- 3. 10 pts. Prove or disprove that the vectors [1, 2, 0], [1, 3, -1], [-1, 1, 1] are linearly independent vectors in \mathbb{R}^3 .
- 4. 10 pts. Let V be a vector space with $\mathbf{v}_1, \mathbf{v}_2 \in V$, and let S be the parallelogram consisting of all linear combinations $t_1\mathbf{v}_1 + t_2\mathbf{v}_2$ with $0 \le t_1 \le 1$ and $0 \le t_2 \le 1$. Prove that S is convex.
- 5. 10 pts. Find the coordinates of the vector $\mathbf{x} = [1, 1, 1]$ with respect to the vectors $\mathbf{u}_1 = [0, 1, -1]$, $\mathbf{u}_2 = [1, 1, 0]$, and $\mathbf{u}_3 = [1, 0, 2]$.
- 6. 10 pts. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ be nonzero vectors in \mathbb{R}^n , and assume they are mutually perpendicular (i.e. $\mathbf{v}_i \perp \mathbf{v}_j$ whenever $i \neq j$). Prove the vectors are linearly independent.
- 7. 10 pts. The plane P given by 2x y + 3z = 0 is a subspace of \mathbb{R}^3 . Find a basis for P.
- 8. 10 pts. What is the dimension of the vector space consisting of symmetric $n \times n$ matrices?
- 9. 10 pts. Find the rank of

$$\begin{bmatrix} 1 & 2 & -3 \\ -1 & -2 & 3 \\ 4 & 8 & -12 \\ 1 & -1 & 5 \end{bmatrix}$$

by obtaining either a row echelon or column echelon form.

10. 10 pts. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by T(x, y) = [3x, 7y]. Describe the image under T of the points lying on the circle $x^2 + y^2 = 1$.