1. 10 pts. Prove or disprove that the set of all $[x, y, z]$ such that $x-2 y=4 z$ is a subspace of \mathbb{R}^{3}.
2. 10 pts. Let V be a subspace of \mathbb{R}^{n}, and let W be the set of vectors in \mathbb{R}^{n} which are perpendicular to every vector in V. Show that W is a subspace of \mathbb{R}^{n}.
3. 10 pts . Prove or disprove that the vectors $[1,2,0],[1,3,-1],[-1,1,1]$ are linearly independent vectors in \mathbb{R}^{3}.
4. 10 pts. Let V be a vector space with $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$, and let S be the parallelogram consisting of all linear combinations $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}$ with $0 \leq t_{1} \leq 1$ and $0 \leq t_{2} \leq 1$. Prove that S is convex.
5. 10 pts . Find the coordinates of the vector $\mathbf{x}=[1,1,1]$ with respect to the vectors $\mathbf{u}_{1}=[0,1,-1]$, $\mathbf{u}_{2}=[1,1,0]$, and $\mathbf{u}_{3}=[1,0,2]$.
6. 10 pts . Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be nonzero vectors in \mathbb{R}^{n}, and assume they are mutually perpendicular (i.e. $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ whenever $i \neq j$). Prove the vectors are linearly independent.
7. 10 pts . The plane P given by $2 x-y+3 z=0$ is a subspace of \mathbb{R}^{3}. Find a basis for P.
8. 10 pts. What is the dimension of the vector space consisting of symmetric $n \times n$ matrices?
9. 10 pts . Find the rank of

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
-1 & -2 & 3 \\
4 & 8 & -12 \\
1 & -1 & 5
\end{array}\right]
$$

by obtaining either a row echelon or column echelon form.
10. 10 pts. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by $T(x, y)=[3 x, 7 y]$. Describe the image under T of the points lying on the circle $x^{2}+y^{2}=1$.

