- 1. Let $\mathbf{u} = [3, -1, 4]$.
 - (a) 5 pts. Find a vector parallel to **u** that has length 1.
 - (b) 10 pts. Find a vector orthogonal to **u** that has length 4.
- 2. Let $\mathbf{u} = [-4, 0, 2]$ and $\mathbf{v} = [-2, -1, 1]$.
 - (a) 10 pts. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
 - (b) 5 pts. Find the cosine of the angle between **u** and **v**.
- 3. 10 pts. For vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ use basic properties of the dot product to prove that

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

- 4. 10 pts. Find a parametric equation for the line passing through the points p = (1, 0, -1) and q = (2, 2, -3).
- 5. 10 pts. Find an equation of the plane in \mathbb{R}^3 that is perpendicular to $\mathbf{n} = [-3, 2, 8]$ and contains the point p = (1/2, 0, 2).
- 6. 10 pts. Find a parametric equation $\mathbf{x}(t)$ for the line of intersection of the two planes x y + z = 2and 2x - 3y + z = 6.
- 7. 10 pts. Find **ABC** for

$$\mathbf{A} = \begin{bmatrix} 2 & a & 1 \\ 3 & -4 & 2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 3 \\ -2 & a \\ 0 & -1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

- 8. 10 pts. Suppose that $A^3 A + I = O$. Show that A is invertible.
- 9. Let **A** and **B** be two $n \times n$ matrices. We say **A** is **similar** to **B** if there exists an invertible matrix **T** such that $\mathbf{B} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1}$. Suppose this is the case. Prove the following.
 - (a) 5 pts. **B** is similar to **A**.
 - (b) 10 pts. **A** is invertible if and only if **B** is invertible.

10. 10 pts. Find the inverse for the matrix using elementary row operations, if the inverse exists:

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

11. 10 pts. Find the solution set of the system using Gaussian elimination:

$$\begin{cases} x + 2y + 2z = 9\\ 2x + 4y - 3z = 1\\ 3x + 6y - 5z = 0 \end{cases}$$

12. 10 pts. Find the complete solution set of the system:

$$\begin{cases} 3x - y + 6z = 4\\ x + y - 2z = 0 \end{cases}$$