1. 10 pts. An $n \times n$ symmetric matrix \mathbf{A} with real entries is called positive definite if $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{x} \neq \mathbf{0}$. Prove or disprove that

$$
\mathbf{A}=\left[\begin{array}{rr}
4 & 1 \\
1 & 10
\end{array}\right]
$$

is positive definite.
2. 10 pts. Find an orthonormal basis for the subspace of \mathbb{R}^{3} generated by the vectors $(2,1,1)$ and $(1,3,-1)$.
3. 15 pts . Let V be the vector space of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$, and define a scalar product on V by

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

for all $f, g \in V$. Let U be the subspace of V generated by $\left\{1, t, t^{2}, t^{3}\right\}$; that is, $U=\operatorname{Span}\left\{1, t, t^{2}, t^{3}\right\}$. Find an orthogonal basis for U.
4. 10 pts . Evaluate the determinant:

$$
\left|\begin{array}{rrr}
4 & -2 & 3 b \\
0 & a & -13 \\
1 & 0 & a
\end{array}\right| .
$$

5. 10 pts . Evaluate the determinant, which will be a polynomial in t :

$$
\left|\begin{array}{rrrr}
-2 & 2 & 3 & -4 \\
1 & 1 & 6 & 3 \\
-1 & 0 & 1 & -1 \\
-2 & t & 6 & 5
\end{array}\right|
$$

6. 15 pts. Solve the system using Cramer's Rule.

$$
\left\{\begin{aligned}
x+2 y-3 z+5 w & =0 \\
2 x+y-4 z-w & =1 \\
x+y+z+w & =0 \\
-x-y-z+w & =4
\end{aligned}\right.
$$

7. 10 pts . Use determinants to find the rank of the matrix

$$
\mathbf{H}=\left[\begin{array}{rrrr}
3 & 5 & 1 & 4 \\
2 & -1 & 1 & 1 \\
8 & 9 & 3 & 9
\end{array}\right]
$$

