NAME:

- 1. <u>10 pts.</u> Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping such that L(1,1) = (2,-1) and L(-1,3) = (1,2). Find L(0,1).
- 2. 10 pts. Let V, W be vector spaces and $L: V \to W$ a linear mapping. Suppose $\mathbf{w}_1, \ldots, \mathbf{w}_n \in W$ are linearly independent and $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ are such that $L(\mathbf{v}_k) = \mathbf{w}_k$ for $1 \leq k \leq n$. Show that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.
- 3. 10 pts. Let $L: V \to W$ be a linear mapping. Assume dim $V > \dim W$. Prove that the kernel of L is not $\{\mathbf{0}\}$.
- 4. 10 pts. Find the dimension of the subspace of \mathbb{R}^5 orthogonal to the vectors (1, 1, -2, 3, 4), (1, 0, 0, 2, 0), (0, 1, 0, 1, 0).

5. 10 pts. Find the matrix corresponding to the linear mapping $L: \mathbb{R}^4 \to \mathbb{R}^3$ given by

$$L([x_1, x_2, x_3, x_4]^{\top}) = [2x_3, 0, -2x_1]^{\top}$$

with respect to the standard bases.

- 6. 10 pts. Let $P: V \to V$ be a linear map such that $P \circ P = P$. Show that V = Ker(P) + Img(P).
- 7. 10 pts. Let $L: \mathbb{R}^{1 \times 2} \to \mathbb{R}^{1 \times 2}$ be the linear transformation defined by

$$L(x, y) = [2x + y, 3x - 5y].$$

Show that L is invertible.

8. 10 pts. The ordered sets

$$\mathcal{B} = \left(\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right) \text{ and } \mathcal{C} = \left(\begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right)$$

are bases for \mathbb{R}^2 . Find the change of basis matrix $\mathbf{I}_{\mathcal{BC}}$ (a.k.a. transition matrix) for changing from the basis \mathcal{B} to the basis \mathcal{C} .