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EUCLIDEAN VECTORS

1.1 — Groups, RINGS AND FIELDS

It is assumed that the reader is well familiar with sets and functions. Given a set S, a
binary operation from S x S to S is a function % : S x S — S, so that for each (a,b) € S x S
we have x(a,b) € S. As is customary we will usually write a * b instead of *(a, b). The operation
* is commutative if, for every a,b € S,

x(a,b) =axb=>bxa=x(ba),
and associative if, for every a,b,c € S,
x(a,*(b,c)) =ax(bxc) = (axb)xc=x(x(a,b),c).

Common binary operations are addition of real numbers, + : R x R — R, and multiplication
of real numbers, - : R x R — R, both of which are commutative and associative. Recall that
subtraction and division of real numbers is neither commutative nor associative, and indeed
a =+ b is not even defined in the case when b = 0!

Linear algebra is foremost the study of vector spaces, and the functions between vector
spaces called mappings. However, underlying every vector space is a structure known as a field,
and underlying every field there is what is known as a ring. Thus we begin with the definition
of a ring and proceed thence.

Definition 1.1. A ring is a triple (R,+,-) consisting of a set R of objects, along with binary
operations addition + : R x R — R and multiplication - : R X R — R subject to the following
azTioms:

Rl. a4+ b=0+a for any a,b € R.

R2. a+ (b+c¢) = (a+b)+c for any a,b,c € R.

R3. There exists some 0 € R such that a +0 = a for any a € R.
R4. For each a € R there exists some —a € R such that —a +a = 0.
R5. a-(b-¢)=(a-b)-c for any a,b,c € R.

R6. a-(b+c)=a-b+a-c foranya,b,c € R.
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As in elementary algebra it is common practice to denote multiplication by omitting the
symbol - and employing juxtaposition:

ab=a-b, albc)=a-(b-¢c), alb+c)=a-(b+c),

and so on.
We call the object —a in Axiom R4 the additive identity of a. From Axioms R1 and R4
we see that

(—a)+a=a+ (—a)=0.
As a matter of convenience we define a subtraction operation as follows:

a—b=a+ (-b),
so that
a—a=0
obtains just as in elementary algebra.

Definition 1.2. A ring (R, +,+) is commutative if it satisfies the additional axiom

R7.a-b=b-a foralla,b € R.

Definition 1.3. A commutative ring (R,+,-) is a unitary commutative ring if it satisfies
the additional axiom

R8. There exists some 1 € R such that a-1 = a for any a € R.

A ring that satisfies Axiom R8 but not R7 is simply called a unitary ring, but we will have
no need for such an entity.

Definition 1.4. Let (R, +,) be a unitary ring. The multiplicative inverse of an object
a € R is an object a=' € R for which

We now have all the necessary pieces in place in order to give the following simple definition

of a field.

Definition 1.5. A field is a unitary commutative ring (R,+,-) for which 1 # 0, and every
a € R such that a # 0 has a multiplicative inverse.

To summarize, a field is a set of objects F, together with binary operations + and - on IF,
that are subject to the following field axioms:

Fl.a+b=b+a for any a,b e F.

F2. a+ (b+c¢)=(a+0b)+c for any a,b,c € F.

F3. There exists some 0 € F such that a4+ 0 = a for any a € F.
F4. For each a € F there exists some —a € F such that —a + a = 0.
F5.a-(b-¢c)=(a-b)-c for any a,b,c € F.

F6. a-(b+c)=a-b+a-c for any a,b,c € F.
F7.a-b=0b-a for alla,beT.

F8. There exists some 0 # 1 € F such that a-1 = a for any a € F.



F9. For each 0 # a € F there exists some a™' € F such that aa™" = 1.

Commonly encountered fields are the set of real numbers R under the usual operations of
addition and multiplication, and also the set of complex numbers C. Many results in linear
algebra (but not all) are applicable to both the fields R and C, in which case we will employ
the symbol F to denote either. That is, anywhere [F appears one can safely substitute either R
or C as desired. Throughout these notes a scalar will be taken to be an object belonging to a
field. Throughout the remainder of this chapter all scalars will be real numbers.

Example 1.6. The set of integers Z under the usual operations of addition and multiplication
satisfies all the field axioms save for one: F9, the axiom that requires every nonzero element in
a set of objects to have a multiplicative inverse that also is an element of the set of objects. The
multiplicative inverse for 2 € Z is 271, and of course 271 = 1/2 does not belong to Z. Therefore
7 is not a field under the usual operations of addition and multiplication.

In contrast, the set of rational numbers

@:{%’:p,qezmdq¢o}

is a field under the usual operations of addition and multiplication, since the reciprocal of any
nonzero rational number is also a rational number. |

Example 1.7. A finite field is a field that contains a finite number of elements. One example
is the set Zy = {0, 1}, with a binary operation + defined by
0+0=0, 0+1=1, 1+0=1, 14+1=0,
and a binary operation - defined by
0-0=0, 0-1=0, 1-0=0, 1-1=1

Note that the only departure from “usual” addition and multiplication in evidence is 1 + 1 = 0.
It is straightforward, albeit tedious, to directly verify that each of the nine field axioms are
satisfied. ]



1.2 — REAL EUCLIDEAN SPACE

Let R denote the set of real numbers. Given a positive integer n, we define real Euclidean
n-space, or simply n-space, to be the set

R" = {(z1,22,...,2,) : x; € Rfor 1 <i < n}. (1.1)

Any ordered list of n objects is called an m-tuple, and the n-tuple (x1,xs,...,z,) of real
numbers, when regarded as an element of R", is called a point in n-space. Each value x; in
(1,22, ...,x,) is called a coordinate of the point, with z; being the “first” coordinate, xo the
“second” coordinate, and so on. If z is a point in R”, we write x € R” and take this as meaning

r=(x1,29,...,Tp)

for some real numbers z1,xs,...,2,. If z; = 0 for all 1 < i < n, then we obtain the point
(0,0,...,0) called the origin.
Euclidean 2-space is more commonly known as the plane, which is the set

R? = {(z1,29) : &1, 29 € R},

with each point (x1,z2) in the plane (or “on the plane”) being a 2-tuple usually called an
ordered pair. Euclidean 3-space is customarily called simply space, which is the set

R® = {(x1, 22, %3) : #1, 2,73 € R},

with each point (z1,x9,z3) in space being a 3-tuple usually called an ordered triple.

It is natural to assign a geometrical interpretation to the notion of a point on a plane or
in space. Specifically, in the case of a point p = (p1,p2) € R? (i.e. a point p on a plane), it is
convenient to think of p as being “located” somewhere on the plane relative to the origin (0,0).
Exactly how the coordinates p; and p, of the point p are used to determine a location for p on
the plane depends on the coordinate system being used. In R? the rectangular and polar
coordinate systems are most commonly employed. In R3 there are the rectangular, cylindrical,
and spherical coordinate systems, among others. Unless otherwise specified, we will always use
the rectangular coordinate system! For those who may not have encountered the rectangular
coordinate system in R?, Figure [2 should suffice to make its workings known. In the figure the
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FIGURE 1. At left: p = (p1,p2) in the rectangular coordinate system. At right:
p = (p1,p2) in the polar coordinate system.
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FIGURE 2. Stereoscopic image of R® with p = (pi, p2, p3) in the rectangular
coordinate system.

positive x;-axis is labeled for i = 1,2, 3, and so the point p = (p1, p2, p3) shown has coordinates
p; > 0 for each 1.

It will be convenient to designate operations that allow for “adding” points, as well as
“multiplying” them by real numbers and “subtracting” them. The definitions for these operations
make use of the operations of addition and multiplication of real numbers which are taken to be
understood.

Definition 1.8. Let p = (p1,p2,.--,pn) and ¢ = (q1,q2, - -, qn) be points in R", and ¢ € R.
Then we define the sum p+ q of p and q to be the point

pHqa= P+ aq,p2+ a0t @),
and the scalar multiple cp of p by c to be the point
cp = (ep1,cpa, .-, CPy).
Defining —p = (—p1, —pa, . .., —Dn), the difference p — q of p and q is given to be
p—q=p+(-q).



1.3 — LOCATED VECTORS

A located vector in n-space is an ordered pair of points p,q € R". We denote such an
ordered pair by pq rather than (p, ¢), both to help distinguish it from a point in R? (which is an
ordered pair of numbers), and also to reinforce the natural geometric interpretation of a located
vector as an “arrow” in n-space that starts at p and ends at q. We call p the initial point of
pq, and ¢ the terminal point, and say that pq is “located at p.” If the initial point p is at the
origin (0,0, ...,0), then the located vector pq is called a position vector (a vector located at
the origin).

The situation in R? will be illustrative. In Figure |3|it can be seen that, if p = (p1, p2) and
q = (q1, q2), then pg may be characterized as an arrow with initial point p that decomposes into
a horizontal translation of ¢; — p; and a vertical translation of ¢, — ps.

Two located vectors pg and u? are equivalent, written pg ~ uv, if ¢ — p = v — u. Again
considering the situation in R? if p = (p1,p2), ¢ = (q1,¢2), u = (uy,us), and v = (vy, vy), then

—  —>

pg~UY S g—p=v—u
& (q1,q2) — (p1,p2) = (v1,v2) — (U1, u2)

& (1 —p1,q — p2) = (V1 — Uy, vy — Us)
& q—pr=v1—u and g — P =V — Us.

Thus pg ~ ud in R? if and only if the arrows corresponding to the two located vectors decompose
into the same horizontal and vertical translations.
If o =(0,...,0) is the origin in R", p = (p1,...,pn), and ¢ = (q1,- - -, qn), then
P ~ o(qg —p).
This is verified by direct calculation:

q—p:(Q1—P1,Q2—p2) = (91—1717(]2—]92)—(0;0):(q—P)—O'

Thus, any arbitrary location vector pg is equivalent to some position vector, and in the exercises
it will be established that the position vector equivalent to pg must be unique.

Y
q
92 +
ba q2 — P2
p
D2 + .
g1 — D1
D1 0 xr

FIGURE 3. A vector in the plane R? located at p.
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F1GURE 4. Equivalent located vectors, all belonging to v.
Definition 1.9. Let 00 be a position vector in R™. The equivalence class of 00, denoted by
v, is the set of all located vectors that are equivalent to ov. That is,
v ={pq: o0 ~ pq}.

The equivalence class v of a located vector ov is also called the vector v.

The symbol v is usually handwritten as v". If v = (vq,...,v,), then it is common to denote
v by either
U1
[v1,...,v,] or
Un,
The row format exhibited in the first symbol will be used throughout this chapter, but later
on the column format of the second symbol will be favored. Thus v = [vy, ..., v,] is the set of
located vectors that are equivalent to the position vector having v = (vy,...,v,) as its terminal
point. A vector of the form [vy,...,v,], where the ith coordinate v; is a real number for

each 1 <i < mn, is called a Euclidean vector (or coordinate vector) to distinguish it from
the more abstract notion of vector that will be introduced in Chapter 3. Put another way, a
Euclidean vector is an equivalence class of located vectors in a Euclidean space R", and it is
fully determined by n real-valued coordinates vy, ..., v,.
The Euclidean zero vector is the vector 0 whose coordinates are all equal to 0; thus if
0 € R", then
0=1[0,0,...,0].
—_——
n zZeros
A useful way to think of a vector v # 0 in Euclidean n-space is as an arrow with a fixed
length and direction, but varying location. For instance we can take the located vector o0,

naturally depicted as an arrow with initial point at the origin o and terminal point at the point
v, and move the arrow around in a way that preserves its length and direction. See Figure [4]

Remark. If a located vector pq is equivalent to o0, then strictly speaking we say that pg belongs
to the equivalence class of located vectors known as vector v. However, sometimes the symbol
pq itself may be used to represent the vector v, which is in keeping with the common practice
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F1GURE 5. The geometry of vector addition.

in mathematics of letting any member of an equivalence class be a representative of that class.
Other times we may be given a located vector pg in a situation when location is irrelevant, and
so refer to pg as simply a vector.

Example 1.10. In R? let p = (2,-3,4) and ¢ = (—5,—-2,8). Find v = (v, v, v3) so that
pq ~ 00, where o = (0,0,0).
Solution. By definition p§ ~ 00 means ¢ —p = v — 0, or

(_5a _Qa 8) - (27 _374) = (Ul,'Ug,Ug) - (Oa 070) = (0177}27'03)'

Thus we have
v=(v1,v9,0v3) = (=5 —2,-2—(-3),8 —4) = (-7,1,4).

It follows from this calculation that the located vector pg belongs to the equivalence class

of located vectors known as the vector v = [—7,1,4]. The symbol pq itself could be used to
represent the vector [—7,1,4], and we may even say that pg and [—7,1,4] are the “same vector”
if location in R? is unimportant. |

As with points we define operations that allow for adding and subtracting Euclidean vectors,
and also multiplying them by real numbers.

Definition 1.11. Let u = [uy,...,u,| and v = [v1,...,v,] be Euclidean vectors in R™, and
c € R. Then we define the sum u+ v of u and v to be the vector
U+ Vv =[u+v,..., U, + Uy,
and the scalar multiple cv of v by c to be the vector
v = [cvy, ..., cop).
Defining —v = (=1)v, the difference u — v of u and v is given to be

u—v=u+(-v).
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There is some geometrical significance to the sum of two vectors, and it suffices to consider
the situation in R? to appreciate it. Define vectors u = [uy, us] and v = [vy,v5] in the plane.
One representative of u is the located vector ou. As for v, from

(u4+v)—u=ut+v—u=v=v—0

we have

u(u + v) ~ o0,

and so u(u + v) is a located vector—in fact the only located vector—having initial point u that
can represent v. Finally, a representative for u 4 v is the located vector

o(u+v).

Now, if the located vectors ou, u(u + v), and o(u + v) are all drawn as arrows in R?, they will
be seen to form a triangle such as the one at left in Figure 5} Indeed if 07, also representing v,
and

v(u+v)

—easily seen to be another representative of u—are also drawn as arrows, then a parallelogram
such as the one at right in Figure |5| results. In the figure, it should be pointed out, the various
located vectors are labeled only by the vector (u or v) that they represent.

After this section we will refer to located vectors only infrequently, and instead focus mostly
on vectors. Until Chapter 3 the vectors will be strictly of the Euclidean variety, viewed naturally
as arrows in R"™ which have length and direction but no particular location. Also we will often
use the symbol R" to denote the set of all Euclidean vectors of the form [z1,...,x,], rather
than the set of all points (z1,...,z,). That is,

R™ = {[z1,...,2,) s x; € Rfor 1 <i<mn}.

There is no substantive difference between this definition for R™ and the one given by equation
(1.1)); there is only a difference in interpretation.

Definition 1.12. Two vectors u,v are parallel if there exists some scalar ¢ # 0 such that
u=cv.
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1.4 — THE DoT ProDUCT

We have established operations that add and subtract vectors, and also multiply them by
real numbers. Now we define a way of “multiplying” vectors that is known as the dot productﬂ

Definition 1.13. Let u = [uy,...,u,| and v = [v1,...,v,] be two vectors in R™. Then the dot
product of u and v is the real number

n
UV = UV + UVg + * -+ 4+ UV, = E U;V;.
=1

Thus, if u and v are vectors in R?, then
u-v = [ug, ug - [vr, v2] = ugvy + ugus.

Some properties of the dot product now follow.

Theorem 1.14. For any vectors u,v,w € R" and scalar c,
l.u-v=v-u

22u-(v+w)=u-v+u-w

3. (cu)-v=c(u-v)=u-(cv)
4. u-u>0ifu#0

Proof. Proof of (2):
u- (VA w) = [ur, ) ([0, v] [, wn))

= [Up, .. U] o Fwy, . v Wy

n

- Z wi(v; +w;) = Z(uﬂh + usw;)
i=1

i=1

n n
= E UZ’UZ—FE iniZU'V—i—u-W,
i=1 i=1

using the established summation property > (a; +b;) = > a; + > b;.
Proofs for the other dot product properties are left to the exercises. |

Definition 1.15. Two vectors u, v are orthogonal, written u L v, if u-v = 0.

Orthogonal vectors are also said to be perpendicular, and in the next section we shall see
that this means precisely what we expect: the vectors form a right angle.

Example 1.16. Find two mutually perpendicular vectors in R? that are each perpendicular to
v=[2,-1,3]

IThe dot product is also called the “scalar product” in some books.
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Solution. We need to find vectors u = [uy, ug, uz) and w = [w;, wq, ws] such that
u-w=u-v=w-v=_0
From this we obtain a system of equations:
200 — us + 3uz =0

2’(1]1 — Wy + 3w3 =0
UTW1 + UWo + UzWs3 = 0

There are six variables but only three equations, and so we can expect that there are an infinite
number of solutions. To satisfy the third equation we may choose, quite arbitrarily, to let
uiwy, = 1, uswy = —2, and uzws = 1, so that

1 2
wy =—, wyg=-——, and wz=—. (1.2)
Uy U2 us
Substituting these into the system’s second equation yields
2 2 3
—+—+—=0. (1.3)

U1l U2 Uus
Now, from the system’s first equation we have uy = 2u; + 3us, which we substitute into ([1.3)) to

obtain
2 2 3

’LL_l 2U1 + 3U3 U_3
From this, with a little algebra, we obtain a quadratic equation:

=0.

2u3 + Bujuz + 2uj = 0.

We employ the quadratic formula to solve this equation for ug:

—5uy £ /25uf — 4(2)(2u?)  —5uy & 3|uy|
ug = = :
’ 2(2) 4

If we set u; = 1 (again an arbitrary choice we're free to make), then we find that
—5=£3 1
- -9
BT T2

If we choose uz = —2, then we have

and so u = [1,—4, —2]. Also from ([1.2)) we have

Therefore

1 1

[1,—4,—2] and 1, -, —=

27 2
are two mutually perpendicular vectors that are each perpendicular to [2,—1,3]. There are
infinitely many other possibilities. ]
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1.5 — THE NORM OF A VECTOR

Definition 1.17. The norm of a vector v € R™ is ||v]| = /v - v.

If v=luvy,...,v,], then

n

IVl = V[ve, .. vn] - [01, ..y o] = Zi:l v? (1.4)

The norm of a vector is also known as the vector’s magnitude or length. Consider a located
vector o0 in the plane, which is a convenient representative of the vector v = [v1,v5]. In §1.2 we
saw that o0 may be depicted as an arrow that starts at the origin o = (0,0) and ends at the
point v = (vq,vy). How long is the arrow? The answer is given by the conventional (Euclidean)
distance d(o0,v) between o and v that is derived from the familiar Pythagorean Theorem:

d(0,v) = /(v1 = 0)2 + (v2 — 0)2 = /v + 03,
On the other hand from (1.4) we have

IVl = /vt + o3,

and so ||v|| = d(o,v), the length of the arrow o0 representing v. Note that if pg ~ o0, where
p = (p1,p2) and q¢ = (q1,¢2), then

d(p,q) = V(0 — p1)* + (@2 — p2)? = o} + 13 = d(o0,v) = |[v]|

since ¢; — p1 = v1 and ¢ — pa = vy, and so it does not matter which located vector we choose
to represent v: the length of the arrow will be the same! These truths stay true in R? using
the usual Euclidean conception of distance in three-dimensional space. In fact, in light of the
following definition they remain true in R"™ for all n.

Definition 1.18. Let x,y € R™. The distance d(x,y), between x and 'y is given by
d(x,y) = |x -yl

Thus if x = [x1,...,2,] and y = [y1, ..., ¥y, then

d(x,y) = \/Z;(l’i — Yi)?,

which reduces to the usual formula for the distance between points x and y when n equals 2 or
3. That is, d(x,y) = d(z,y) in R? or R.

Remark. From now on we will frequently use the bold-faced symbol x for the vector [z1, ..., z,]
to represent the point x = (z1,...,x,). The logic of doing this is thus: a point z is naturally
identified with its corresponding position vector o, and o7 is naturally identified with x. Such
“vectorization” of points allows for a uniform notation in the statement of momentous results
in vector calculus and the sciences. Moreover it places everything under consideration in the
setting of a “vector space,” which is the main object of study in linear algebra. So it must be
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u
u u
X
0 > 0 > -
v Ve Ve v
FIGURE 6.
remembered: depending on context, x = [y, ..., x,] may be interpreted as a vector, a located

vector, or a pointf]

We are now in a position to justify Definition [1.15] by which we mean ground the definition
in more familiar geometric soil. Suppose u,v € R" are orthogonal vectors, which is to say
u-v = 0 and (since the dot product is commutative) v - u = 0. Recall that located vectors
representing u, v and u + v may be chosen so that their corresponding arrows form a triangle,
as at left in Figure[5] A triangle is a planar figure so it does not matter if the located vectors
are in an n-space for some n > 2: we can always orient the situation so that it lies on a plane.
Now, |[u+ v|| is the length of the longest side of the triangle, and ||u|| and ||v|| are the lengths
of the shorter sides. From the calculation

2
Ju+v]2 = (VFv) - @sv) = @+v)- (u+v)
=(u+v)-u+(u+v)-v=u-u+v-u+u-v+v-v
= [[ul* + [IvI?*,
it can be seen that the lengths of the triangle’s sides obey the Pythagorean Theorem, and so it
must be that the triangle is a right triangle. That is, the sides formed by the located vectors

representing u and v must meet at a right angle and therefore be perpendicular! It is in this
sense that orthogonal vectors are also said to be “perpendicular.”

Proposition 1.19. Ifu,v € R" are orthogonal vectors, then ||[u+ v|* = ||Jul|* + ||v|*.
The proof has already been furnished above.

Definition 1.20. Let v # 0. The orthogonal projection of u onto v, proj, u, is given by

) u-v

proj, u = (—)V

V-V
Once again it should help to ground the definition in geometry, because ultimately it is
geometry that motivates the definition. Let u,v € R™ with v # 0. We represent these vectors
by located vectors with common initial point o as at left in Figure[6] For any ¢ € R let v, = ¢v.
We wish to find the value for ¢ so that the vector x represented by located vector v.u at right in
Figure [0] is orthogonal to v. This means ¢ must be such that x - v = 0, and since v, + x = u we

obtain
(u—v,) -v=0

It was Henri Poincaré who said “Mathematics is the art of giving the same name to different things.”
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and thus
u-v—veev=u-v—(cv) - v=0.

Since (¢v) - v = ¢(v - v) we finally arrive at
c=—"01. (1.5)

Now, consider the right side of Figure [ again. It can be seen that the vector v, as pictured,
would be the shadow that u would cast upon v were a light to be directed upon the scene
from directly overhead. It is in this sense that v, is a projection of u onto v—in particular
the orthogonal projection, since the “light rays” casting the “shadow” are perpendicular to v.
Multiplying both sides of equation by v gives

u-v
Ve=|—]v,
V-V

which is proj, u as given in Definition [1.20]
Lemma 1.21. Ifu,v € R", v # 0, and ¢ is as in (L.5]), then u — cv is orthogonal to v.

Proof. Taking the dot product,

(u—cv)-v:u-v—c(v-v):u-v—<%>(V-v):u-v—u-V:0,

we immediately conclude that u — cv L v. |

It’s a worthwhile exercise to verify that if u L v, then u L av for any scalar a. The lemma
will be used to prove the following.

Theorem 1.22 (Schwarz Inequality). If u,v € R", then |u-v| < |jul|||v].

Proof. Suppose u,v € R". If u =0 or v =0, then
ju-v[= 0] =0=ul|v],

which affirms the theorem’s conclusion. So, suppose u,v # 0, and let ¢ € R be given by (1.5)).
Now,

(u—cv)-(cv) =c[(u—cv)-v]=¢0) =0,
where (u—c¢v)-v =0 by Lemma (.21} Thus u — c¢v and c¢v are orthogonal, and by Proposition
1.19
[ull* = (w—cv) + ev]]* = [u—cv|* + [[ev]*.

Since |Ju — ¢v||? > 0, this implies that |cv||? < ||ul[*>. However,

>2(V-V): (u-v)>  (u-v)?

vy vl

u-v

Jevi? = liv]* = (
V-V

and so from ||cv||* < ||ul|* we obtain
(u-v)?
[v]]?

whence comes (u-v)? < |Jul]?||v||>. Taking the square root of both sides completes the proof. W

< [,
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From the Schwarz inequality we have
= [[uffliv]] < a-v < fhuafffv],

and thus

1< — T <1
[[all[[vl

for any u,v # 0. This observation justifies the following definition.

Definition 1.23. Let u,v € R™ be nonzero vectors. The angle between u and v is the number
6 € [0, 7] for which
cosf = -V (1.6)
[[alf{lv]]

Since the function cos : [0, 7] — [—1, 1] is one-to-one and onto, and the fraction in (1.6)) only
takes values in [—1, 1], there will always exist a unique value 6 € [0, 7] that satisfies ((1.6]). From
Definition [1.23| we have a new formula for the dot product:

u-v = ||ull||v] cosb. (1.7)

Some textbooks give this formula as the definition of the dot product, but it is less desirable
since the idea of a dot product is then founded on a geometric notion of angle that becomes
problematic to visualize in R™ for n > 3. However it is worthwhile verifying that the definition
of angle between vectors, as given here, agrees with our geometric intuition. For the sake of
simplicity we can assume that u and v are nonzero vectors in R?, though the situation does not
alter in R™ for n > 2 since two vectors can always be represented by coplanar located Vectorsﬁ
The approach will be to let 6 be the geometric angle between u and v, and then show that
must necessarily follow.

Let 0 < # < w. The vectors u, v, and u — v may be represented by located vectors that form
the triangle in Figure [7| (for convenience we depict 6 as an acute angle).

By the Law of Cosines we obtain

[l = vI* = al* + [[v]* = 2[[ul||v]| cos 6,

and since we're assuming that u = [uy, us] and v = [v1, v9], we obtain u — v = [u; — vq, us — vy
so that
(ur = 01)? + (ug — v2)* = (uf + u3) + (v} +v3) = 2[u|[|v] cos b,

3This is because two located vectors can be defined by three points p, ¢, and r, such as pg§ and pr, and three
points define a plane.

FIGURE 7.
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and hence
ull[lv]| cos @ = uyvy + ugve =u - v.

In the cases when 6 = 0 or # = 7 we find that v = ku = [kuy, kus] for some nonzero scalar
k; that is, u and v are parallel vectors, and we have

lull||v]| cos 6 = |Ju|||kul| cos § = |k|(u® + u3) cos 6. (1.8)

If 0 =0, then k£ > 0 so that |k| = k and cos@ = 1; and if § = 7, then k < 0 so that |k| = —k
and cosf = —1. In either case, from (|1.8) we obtain

|ull||v|| cos @ = k(u% + ug) = [uy, ug - [kuy, kug) =u-v
as desired.

Example 1.24. Let u=[2,—1,5] and v = [-1,1,1].

(a) Find [|u|| and ||v||.

(b) Find proj, u, the orthogonal projection of u onto v.

(¢) Find proj, v, the orthogonal projection of v onto u.

(d) Find the angle between u and v to the nearest tenth of a degree.

Solution.
(a) We have
lul| = /22 + (-1)2+52=+30 and ||v||=+/(-1)2+12+12=+/3.
(b) Since
uwv=@2)D)+ DM+ G)1) =2 and vev=|v]F=(V3) =3,
we have , )y 5
: u-v
projy u = (ﬁ)v - g[_la L, 1] - |:_§7 ga §:| .
(c) Since
v.u=u-v=2 and u-u=|ul>=(v30)? =30,
we have

v-u 2 2 11
v (N u= 2,15 = |2 - o
ProJu v <u~u>u 302 1) {15’ 15’3}
(d) By definition,
u-v 2

2
lalllivll V30v3  3v10°

2
0 = cos™! (—) ~ T7.8°.
310

cosf =

and thus

Example 1.25. Find the measure of the angle # between the diagonal of a cube and the
diagonal of one of its faces, as shown in Figure
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7

FIGURE 8.

Solution. It will be convenient to regard the cube as existing in R3, with edges of length 1,
and the vertex where the two diagonals meet situated at the origin (0,0,0). We can then set
up coordinate axes such that the cube diagonal has endpoints (0,0,0) and (1,1,1), and the
face diagonal has endpoints (0,0,0) and (0,1,1). Thus the diagonals can be characterized as
positions vectors u = [1,1, 1] and v = [0, 1, 1]. Now,

u-v [1,1,1]-[0,1,1] 2

cosf = = ==
[ufllvll vI2+12+12V02+12+12 V6
and so
0 = cos™ <i) ~ 35.264°
NG )
is the angle’s measure. ]

PROBLEMS

1. Find the measure of the angle # between the diagonal of a cube and one of its edges, as

shown below.
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1.6 — LINES AND PLANES

In R? a line L is typically defined to be the solution set to an equation of the form az +by = ¢
for constants a, b, c € R, where a and b are not both zero. That is, L is the set of points

{(z,y) : ax + by = C},

and az + by = C' is called the Cartesian equation (or algebraic equation) for L. In R" for
n > 2 we can still speak geometrically of lines, of course, but it becomes impossible to define the
line using a single Cartesian equation. The most convenient remedy for this is to use vectors,
thereby motivating the following definition.

Definition 1.26. Let p,v € R" with v # 0. The line through p and parallel to v € R™ is the
set of vectors of the form

{p+tv:teR}

A parametric equation (or parametrization) of a line L = {p +tv :t € R} CR" is any
vector-valued function x : R — R" given by

x(t) =p +tv

for some p € L and vector v parallel to v. (Here ¢ is called a parameter.) Thus we find that

x(t)=p+tv
is one parametrization for L, but there are infinitely many others in existence.
Given a parametrization x(t) = p + tv for some line in R", the vector p = [py, ..., p,| may
more naturally be thought of as the position vector op of the point p = (py,...,p,), and so in

everyday speech p may be referred to as a point even though mathematically it is handled as a
vector. The same applies to the vector

x(t) = [z1(t), ..., zn(1)]

for each t € R: we may regard it, if desired, as the position vector of the point

x(t) = (x1(t), ..., x,(t)),

and so refer to it as a point. In contrast, for each ¢ € R the vector tv may be thought of as a
localized vector (i.e. an arrow) with initial point at p and terminal point located at another
point on the line.

Definition 1.27. The line segment in R with endpoints p,q € R"™ is the set of vectors of
the form

{p+tla—p):tc0,1]}.

A natural parametrization for a line segment with endpoints p and q is the vector-valued
function x : [0, 1] — R™ given by

x(t) =p+t(q—p), (1.9)
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though it is frequently the case in applications that other parametrizations may be considered.
In ([1.9) we have x(0) = p and x(1) = q, and so as ¢ increases from 0 to 1 we see that we “travel”
along the line segment from p to q. However, the alternative parametrization

x(t) =q+t(p—q)
reverses the direction of travel.

Example 1.28. Find a parametrization x(¢) of the line containing the points p = (2, —6,9)
and ¢ = (0,8, 1), such that x(1) = p and x(—2) = q.

Solution. We must have x(t) = p + f(t)(q — p) for some function f such that f(1) =0 and
f(=2) = 1. The simplest such function is a linear one, which is to say f(t) = mt+b for constants
m and b. With the condition f(1) =0 we obtain b = —m, so that f(¢) = m(t — 1). With the
condition f(—2) =1 we obtain 1 =m(—2 — 1), or m = —1/3, and hence b = 1/3. Now we have

x(t)=p+(—5t+3)(a—p)
for p=[2,—6,9] and q = [0, 8, 1], giving

x(t) = 3.3 3] +t[5. =55

Other answers are possible if we choose f to be a nonlinear function. |

In R? a line P is sometimes defined to be the solution set to an equation of the form
ax + by + cz = d for constants a, b, c,d € R, where a, b, ¢ are not all zero. That is, P is the set
of points

{(z,y,2) : ax + by + cz = d},

where ax + by 4+ cz = d is the Cartesian equation for P. In R” for n > 3 we may still wish
to conceive of planes, but it is no longer possible to define the plane using a single Cartesian
equation. The following definition uses vectors to define the notion of a plane for all R” with
n > 3.

Definition 1.29. Let u,v € R" be nonzero, nonparallel vectors. The plane through point
p € R™ and parallel to u,v is the set of vectors of the form

{p+su+tv:s,teR}

A parametric equation (or parametrization) of a plane P = {p+su+tv:t € R} CR"
is any vector-valued function x : R? — R” given by

x(s,t) =p+su+tv

for some p € P and vectors u and v parallel to u and v, respectively. (Here and s and ¢ are
called the parameters.) Thus
x(s,t) =p+su+tv (1.10)

is one parametrization for P among infinitely many.
A normal vector for a plane P having parametrization ((1.10) is a nonzero vector n such
that n-u=0and n-v =0. A line L is said to be orthogonal to P if L is parallel to n. If L
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is orthogonal to P and p € LN P (i.e. p is the point of intersection between L and P), then the
distance between any point ¢ € L and P is the length of the line segment pq.

Example 1.30. Find both a parametric and Cartesian equation for the plane P containing the
point (0,0,0) that is orthogonal to the line L having parametric equation

x(t) = [3,-2,1] + t[2,1,-3].
Solution. By definition any normal vector n for P must be parallel to L, which in turn means
that n must be parallel to a direction vector of L. Since [2, 1, —3] is an obvious direction vector
of L, we may let n = [2,1, —3|. Geometrically speaking, since P contains the point o = (0,0, 0),

P will consist precisely of those points (z,y, z) for which the vector [z,y, z] —[0,0,0] = [z, y, 2]
is orthogonal to n. Since

n-[z,y,2]=0 < [2,1,-3] [z,y,2] =0 & 2x+y—32=0,

we conclude that 2x + y — 3z = 0 is a Cartesian equation for P.
To find a parametric equation, we use the Cartesian equation to find two other points on P
besides (0,0,0), such as p = (1,—2,0) and ¢ = (0,3,1). Now let

u=p—-0=][1,-2,00 and v=q—-0=][0,3,1].
A parametric equation for P is x(s,t) = 0+ su + tv, or
x(s,t) = s[1,—2,0] + t]0, 3, 1]
for s,t € R. |

Example 1.31. Find a normal vector for the plane 3x + 2y — 2z = 3.

Solution. We first find three points on the plane that are not collinear. This can be done by
substituting values for x and y in the equation, say, and then solving for z. In this way we find
points (0,0,1/7), (1,1,1), and (1,2,2).

Example 1.32. Find the distance between the point ¢ = (1, —2,4) and the plane 3z+2y—2z = 3.
Solution. Letting z = y = 0 in the plane’s equation gives z = 1/7, so p = (0,0, 1/7) is a point

on the plane. Let
V:])_):q_p: [572a_%]
—4,

A normal vector for the plane is n = [4, 7]. We project v onto n:
. vV-n 10
— (X5 \n = —10[4, —4,7].
proja(v) = (S )n = — 184, —4,7)
The magnitude of this vector,
D = || proj,(v)|| = 7

is the sought-after distance. |
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PROBLEMS

. Let Ly be the line given by x(t) = [1,1, 1] + [2, 1, —1], and let Ly be the line with Cartesian
equations

z—1
=5 —4 = .
z Y 5

(a) Show that the lines Ly and L, intersect, and find the point of intersection.
(b) Find a Cartesian equation of the plane containing L; and Ls.

. Let P be the plane in R® which has normal vector n = [1, —4,2] and contains the point
a=(51,3).

(a) Find a Cartesian equation for P.

(b) Find a parametric equation for P.
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MATRICES AND SYSTEMS

2.1 — MATRICES

Let m,n € N, and let F be a field. An m X m matrix over F is a rectangular array of
elements of ' arranged in m rows and n columns:

a1; Q12 - Qin
Q21 Q22 -+ Q2n

(2.1)
Am1 Am2 -~ Omp

The values m and n are called the dimensions of the matrix. The scalar (i.e. element of
F) in the ith row and jth column of the matrix, a;;, is known as the ¢j-entry. To be clear,
throughout these notes the entries a;; of a matrix are always taken to be elements of some field
FF, which could be the real number system R, the complex number system C, or some other field.

A 1 x 1 matrix [a] is usually identified with the scalar a € F that constitutes its sole entry.
For n > 2, both n x 1 and 1 x n matrices are called vector matrices (or simply vectors). In
particular an n x 1 matrix

T
L2
(2.2)
Tn
is a column vector (or column matrix), and a 1 X n matrix
[xl x‘z ... xn}
is a row vector (or row matrix). Henceforth the Euclidean vector [z1, ..., z,] introduced in

Chapter 1 will most of the time be represented by its corresponding column vector (2.2 so as
to take advantage of the convenient properties of matrix arithmetic.
The matrix (2.1) we typically denote more compactly by the symbol

[az‘j]m,m
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which indicates that the ij-entry is the scalar a;;, where i € {1,...,m} is the row number and
j €{1,...,n} is the column number. We call the sets {1,...,m} and {1,...,n} the range of
the indexes ¢ and j, respectively. If m = n then a square matrix results, and we define

[aij]n = [ai]nn-

(Care should be taken with this notation: [a;;]m » denotes an m x n matrix, while [a;;]m, denotes
an mn X mn square matrix!) If the range of the indexes i and j are known or irrelevant, we will
write as simply [a;;]. Another word about square matrices: The diagonal entries of a
square matrix [a;;], are the entries with matching row and column number: ajy, ..., G-

Very often we have no need to make any reference to the entries of a matrix, in which case
we will usually designate the matrix by a bold-faced upper-case letter such as A, B, C, and so
on. The exception is vector matrices, which are normally labeled with bold-faced lower-case
letters such as a, b, x, y and so on. If we need to make reference to the ij-entry of a matrix A,
then the symbol [A];; stands ready to denote it. Thus if A = [a;;]mn, then

[Alij = aij.
The set of all m x n matrices with entries in the field F will be denoted by F™*™. That is,
Fmxn —= {[a@-j]mm ra; €Fforalll<i<m,1<j5< n}
From this point onward we also define
F = !

in these notes; that is, F" is the set of matrices consisting of n entries from F arranged in a
single column. The exception has already been encountered: throughout the first chapter (and
only the first chapter) we always took R" to signify R'*™. In the wider world of mathematics
beyond these notes the symbol F” denotes either row vectors (elements of F1*") or column
vectors (elements of 1) depending on an author’s whim.

If ajj =0forall 1 <7 <m and 1 < j <n, then we obtain the m x n zero matrix

00 --- 0
00 --- 0
Om,n - ]m,n = . . . .
00 --- 0
having m rows and n columns of zeros. In particular we define
0,=0,,.

In any case the symbol O will always denote a zero matrix of some kind, whereas 0 will continue
to denote more specifically a zero vector (i.e. a row or column matrix consisting of zeros).

Definition 2.1. If A,B € F"™*" and c € F, then we define sum A + B and scalar multiple
cA to be the matrices in F™*™ with 1j-entry

[A +BJ;; = [Al];j + [Bl;; and [cAly; = c[A];
foralll<i<mand1<j<n.
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Put another way, letting A = [a;;] and B = [b;;], we have

ay +bnn ap+big - a0y
ag) +bor  age +bay - agy + by
A+B:[a,-j+bij]: . . .
am1 + bml Am2 + bm2 e Amn + bmn
and
Ca11 Ca12 s CA1p
Ca21 Ca92 s CQAop,
cA = [ca;] = _
Clm1  COma  ***  Clmn

Thus matrix addition and matrix scalar multiplications is analogous to the addition and scalar
multiplication of Euclidean vectors. Clearly matrix addition is commutative, which is to say

A+B=B+A

for any A, B € F™*". We define the additive inverse of A to be the matrix —A given by
—A = (1A = [—q;].
That
A+(-A)=-A+A=0

is straightforward to check.

Definition 2.2. Let A € F™*". The transpose of A is the matriz AT € F*™™ such that
[AT];; = [Al;
foralll<i<nand1<j<m.
Put another way, if A = [a;;]m.n, then the transpose of A is the matrix A" = [a;],,,, With

aj; = a;j for each 1 < j < n, 1 <¢ < m. Thus the number a;; in the ith row and jth column of
A is in the jth row and ith column of AT, so that

11 A21 - Qml
12 Qg2 -+ QAm2
T
AT=| 7 . (2.3)
A1p A2n " Amn

Comparing (2.3) with (2.1)), it can be seen that the rows of A simply become the columns of
AT, For example if
A [—3 7 4] |

6 —5 10

then
-3 6
AT=| 7 =5

4 10
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It is easy to see that (AT)T = A. We say A is symmetric if A" = A, and skew-symmetric
if AT = —A. The set of all symmetric n x n matrices with entries in the field F will be denoted
by Sym,,(F); that is,

Sym, (F) = {A e F"": AT = A}
The symbol Skw,(F) will denote the set of all skew-symmetric n x n matrices with entries in F:
Skw,(F) = {A e " : AT = —A}.

A standard approach to proving that two matrices A and B are equal is to first confirm
that they have the same dimensions, and then show that the ij-entry of the matrices are equal
for any i and j. Thus we verify that A and B are m x n matrices (a step that may be omitted
if it is clear), then verify that [A];; = [B];; for arbitrary 1 <¢ <m and 1 < j < n. The proof of
the following proposition illustrates the method.

Proposition 2.3. Let A,B € F"™*" and let c € F. Then

L. (cA)T =cAT

2. (A+B)'=AT +BT
3. (AT)T =A.

Proof.

Proof of Part (1). Fix 1 <i <m and 1 < j <n. Then, applying Definitions and [2.2]
[(cA) iy = [cAlji = c[Alji = c[AT]i; = [cAT];;.

So we see that the ij-entry of (cA)T equals the ij-entry of cAT, and since i and j were arbitrary,
it follows that (cA)"T = cAT.

Proof of Part (2). We have
[(A+B)'];; = [A+BJ;; = [Al;; + Bl;; = [A];; + [B']; = [AT + B']

R
so the ij-entries of (A +B)" and AT + B are equal. [

The proof of part (3) of Proposition , which can be done using the same “entrywise”
technique, is left as a problem.

The trace of a square matrix A = [a;j],, written tr(A), is the sum of the diagonal entries
of A:

n

tr(A) =) a (2.4)

i=1
Since AT = [;j]n.n such that a;; = aj;, we readily obtain

tl"(AT) = iaii = iaii = tr(A)
=1 =1

Other properties of the trace and transpose operations will be established in future sections.
A block matrix is a matrix whose entries are themselves matrices. The matrices that
constitute a block matrix are called submatrices. In practice a block matrix is typically
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constructed from an ordinary matrix A € F™*" by partitioning the entries into two or more
smaller arrays with the placement of vertical or horizontal rules, such as

a1 s Q15 ai s+1 s Q1n
Qr1 e Ay Qr s4+1 T Qrp
: (2.5)
Qry11 " Apgls | Ard1s+1 " Argdn
L am1 e Ams CLm,s—i—l e Amn i
which partitions the matrix A = [a;;]m,, into four submatrices
a3 - Qs A1s+1 °°° Qin Qr411 "0 Qrgds Ar41s+1 " Qrgln
: . . : . . ’ . . ,

Ar1 - Qg Ars+1 *°° App Am1 T Qs Ay, s+1 T Qmn

where of course 1 <r <m and 1 < s < n. If we designate the above submatrices as A1, Ag,
Aj, and Ay, respectively, then we may write (2.5) as the block matrix

Al A2 or A1 Ag
A3 A4 AS A4 ’

with the latter representation being preferred in these notes except in certain situations. A
block matrix is also known as a partitioned matrix.

PROBLEMS

1. Prove that (AT)" = A for any A € F™*".
2. Prove that (A+ B+ C)" = AT + BT + C" for any A, B,C € F™*".

3. Prove that (aA +bB)" = aAT +0B" for any A,B € F™*" and a,b € F.
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2.2 — MATRIX MULTIPLICATION

The definition of the product of two matrices is relatively more involved than that for
addition or scalar multiplication.

Definition 2.4. Let A € F™*" and B € F"*P. Then the product of A and B is the matrix
AB € F™*P with ij-entry given by

for1<i<mand 1l <j<p.

Letting A = [@jj]m,n and B = [b;j],,, it is immediate that AB = [¢;;],,, With ij-entry

Cij = Z aikbkj.
k=1
That is,
AB = [aijlmnn[bislnp = [Zk 1aikbkj] : (2.6)

= m7p
where it’s understood that 1 < i < m is the row number and 1 < 5 < p is the column number

of the entry > ,_, airby;.

Example 2.5. If

4 9 —6
A:[_g 1(1) _g} and B=| 0 -1 2|,
-4 0 -3

so that A is a 2 x 3 matrix and B is a 3 x 3 matrix, then AB is a 2 x 3 matrix given by

- . 4 9 -6
aB=|"0 Y Pl o1 2
: Il-4 0 -3
| [ 4] [ 9] —6] ]
[-3 0 6]| 0| [-3 0 6]|-1] [-3 0 6] 2
| —4] | 0] -3
N 4 [ 9] 6
(2 11 —=5]| 0| [2 11 —5]|—-1| [2 11 —5]| 2
I | —4] | 0] -3]]
[-36 =27 0
T 28 7 25

The product BA is undefined. |
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Vectors may be used to better see how the product AB is formed. Let

ai:[ail ain}

denote the row vectors of A for 1 <i < m,

ar— | a1 Q2 - Qg
Ay — | Q21 Q22 -+ Q2
Ap— LAm1 Gm2 0 Gmp
and let
blj
bj =
by
denote the column vectors of B for 1 < j <p,
b, by -+ b,
44 {
by bz -+ by
B — b?l baa -+ by
bnl bn2 e bnp
Then by definition
[ ap b1 ai b2
asb; asb
AB = [aibj]m,p = 21 22

which makes clear that the ¢j-entry is
blj ]
[AB]Z] = az-bj = [ail o am]

bnj_

ambl ame

=A (2.7)
(2.8)
albp
agbp
a,,b,

n

= ai1b1j + igboj + -+ + ainbn; = Z ik,

k=1

in agreement with Definition [2.4 Note that AB is not defined if the number of columns in A is

not equal to the number of rows in B!

It is common—and convenient—to denote matrices (2.7) and (2.8)) by the symbols

a
a2
and

Am
respectively, and so we have
ax
ag

AB=| . [bl b,

aAm

(b b,
a1b1
agbl

by = |
amb1

b,] .
a1b2 cee albp
agbg s agbp

(2.9)

a,by --- a,b,
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For any j = 1,...,p we have b; € F", which is to say b; has n rows and so Ab; can be computed
following the pattern of (12.9)):
ap alb]’
a asb,
Ab, = | b=
a,, a,b;

(This can be verified easily by working directly with Definition [2.4}) Comparing this result with
the right-hand side of (2.9), we see that Ab; is the jth column vector of AB; that is, we have
the following.

Proposition 2.6. If A € F™*" and B = [by --- b,| € F"*?, then
AB=A[b, - b,] = [Ab --- Ab,].

We see how a judicious use of notation can reap significant labor-saving rewards, leading
from the unfamiliar characterization of AB given in Definition to the perfectly natural
formula in Proposition [2.6]

Theorem 2.7. Let A ¢ ™", B,C € F"*?, D € FP*?, and c € F. Then
1. A(cB) = ¢(AB).

2. A(B+ C) = AB + AC (the distributive property).

3. (AB)D = A(BD) (the associative property).

Proof.
Proof of Part (1). Clearly A(cB) and ¢(AB) are both m X p matrices. Now, for any 1 <i <m
and 1 <j <p,

n

[A(cB)];; = Z[A]zk [cBl; Definition [2.4]
k=1
= [Alir(c[Blx) Definition 2.1
k=1
=c )y [Ali[Blgj Definition [L.5(F5,6,7)
k=1
= c[AB]J;; Definition [2.4]
= [c(AB)]; Definition 2.1

and so we see the ij-entries of A(cB) and ¢(AB) are equal.

Proof of Part (2). Clearly A(B + C) and AB + AC are both m x p matrices. For 1 <i<m
and 1 < j <p,
[AB+C)l;; = ) [Al[B + Cly Definition 2.4

k=1



30

= [Ali(Bli; + [Cliy) Definition 2T
k=1

= [Al[Bli; + > _[Ali[Clx Definition [L.5(F6)
k=1 k=1

= AB + AC. Definition 2.4]

which shows equality of the 77 entries.

Proof of Part (3). Both matrices will be m x ¢. Using basic summation properties and Definition

24
[(AB)D];; = > [ABi[D]g; = Y KZ[M%[EM) [D]kj] = > [AJu[B]u[Dli;

k=1 k=1 L\ ¢=1 (=1 k=1
n P n
= ([A]w Z[B]ek[D]kj) = [A]y[BD],; = [A(BD)];;,
=1 k=1 =1
and the proof is done. |

In light of the associative property of matrix multiplication it is not considered ambiguous
to write ABD, since whether we interpret it as meaning (AB)D or A(BD) makes no difference.
The order of operations conventions dictate that ABD be computed in the order indicated by
(AB)D, however.

Proposition 2.8. If A € F™*" B € F"*?, C € FP*9, and D € F?*", then

(AB)(CD) = A(BC)D.

Proof. Let AB = P. We have
(AB)(CD) =P(CD) = (PC)D = [(AB)C|D = [A(BC)|D, (2.10)
where the second and fourth equalities follow from Theorem [2.7(3). Next we obtain
[A(BC)D =A(BC)D, (2.11)

since the order of operations in evaluating either expression is precisely the same: (1) execute B
times C to obtain BC; (2) execute A times BC to obtain A(BC); (3) execute A(BC) times D
to obtain A(BC)D.

Combining (2.10) and (2.11]) yields (AB)(CD) = A(BC)D. |

There is no useful way to divide matrices, but we can easily define what it means to
exponentiate a matrix by a positive integer.
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Definition 2.9. If A € F™*" and m € N, then

A"=AA---A =]]A
m factors k=1

In particular A' = A.
The definition makes use of so-called product notation,
m
ka = T1X2X3 " T,
k=1

which does for products what summation notation does for sums.
The Kronecker delta is a function d;; : Z x Z — {0, 1} defined as follows for integers ¢ and

1, ifi=y
0ij = ey
0, ifi#£

We use the Kronecker delta to define the n x n identity matrix,

10 --- 0
01 --- 0
L, = [0ij]n = R I
00 --- 1
the n X m matrix with diagonal entries 1 and all other entries 0. In particular we have

1 00

IQ = |:(1) (1]:| and 13 =10 1 0

001

Definition 2.10. For any A € F™*" we define A° =1,.

If the dimensions of an identity matrix are known or irrelevant, then the abbreviated symbol
I may be used. The reason I,, is called the identity matrix is because, for any n x n matrix A,
it happens that

I,A=AI, =A.

Thus I,, acts as an identity with respect to matrix multiplication, just as 1 is the identity with
respect to multiplication of real numbers. In fact it can be shown that I,, is the identity for
matrix multiplication, as there can be no others.

Example 2.11. Show that I is the only matrix for which IoA = AI, = A holds for all 2 x 2
matrices A.

Solution. Given any 2 X 2 matrix

A — {an alZ}’

Q21 A22
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we have
AI _ ajpr Q12 1 0 _ a11(1)+a12(0) a11(0)+a12(1) _ a;pr a2 :A
2 az agg (|0 1 az1(1) + ag2(0) a9 (0) + ax(1) a1 Q22
and

O A [P e e g R

so certainly IcA = AI, = A holds for all A.
Now, let B be a 2 x 2 matrix such that

BA=AB=A (2.12)

for all 2 x 2 matrices A. If we set A =1, in (2.12)) we obtain BI, = I, in particular, whence
B =1,. Therefore I, is the only matrix for which I,A = AI, = A holds for all A. |

To show more generally that I, is the only matrix for which
I,LA=AIL =A

for all A € F™*™ involves a nearly identical argument.

Proposition 2.12. Let A € F™"*".

1. If Ax = x for every n X 1 column vector X, then A =1,.
2. If Ax =0 for every n x 1 column vector x, then A = O,,.

Proof.
Proof of Part (1). Suppose that Ax = x for all n x 1 column vectors x. For each 1 < j < n let
51j
€ = [0ijlna =1 : |,
O

where once again we make use of the Kronecker delta. Thus e; is the n x 1 column vector with
1 in the jth row and 0 in all other rows.
Now, for each 1 < j <n, Ae; is an n X 1 column vector with ¢1-entry equalling

Z aik5kj = az’j(;jj = aij.
k=1
for each 1 <1i < n. On the other hand Ae; = e; by hypothesis, and so

0, ifij
aij = 0ij = P .
1, ifi=y

for all 1 < 14,5 <n. But this is precisely the definition for I,,, and therefore A =1,,. [ |
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The proof of part (2) of the proposition is similar and left as a problem. Observe that, in
the notation established in the proof of part (1), we have

I R [5m]n,1] " (2.13)

Proposition 2.13. Let A € F™*" and B € F"*P. Then
(AB)" =BTAT.
Proof. Note that BT is p x n and AT is n x m, so the product BT AT is defined as a p x m

matrix. Fix 1 <4 < pand 1 < j < m. We have, using Definition and Definition twice
each,

BTAT]; = BTa[ATy = > [BlulAlx = Y [Alx[Blw = [AB; = [(AB)'],.
k=1 k=1 k=1
Thus the ij-entry of BTAT is equal to the ij-entry of (AB)", so BTAT = (AB)" as was to be
shown. ]
PROBLEMS
1. Given that
3 1 2 -3 —4 2
x=|-1|, A=| 30 -1, c=| 1 -1
2 -2 1 4 0 3
compute the following.
(a) x"x
(b) xx"

(c) AC
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2.3 — Row AND COLUMN OPERATIONS

We start by establishing some necessary notation. The symbol E,, ;,,, will denote the n x n
matrix with /m-entry 1 and all other entries 0; that is,

En,lm - [5zl 5mj}n

for any fixed 1 < I, m < n, making use of the Kronecker delta introduced in the last section.
Put yet another way, E,, ;,,, is the n x n matrix with ij-entry ;6.

[En,lm]ij = il(smj~ (214)

Usually the n in the symbol E,, ;,,, may be suppressed without leading to ambiguity, so that
the more compact symbol E;,, may be used. This will usually be done except in the statement
of theorems.

Proposition 2.14. Letn € N and 1 <Il,m,p,q < n.

1. En,lmEn,mp = En,lp-
2. If m # p, then E, 1, E, ,, = O,,.

Proof.
Proof of Part (1). Using Definition [2.4] and equation (2.14)), the ij-entry of E;, E,,, is
BBl = Y [t Emple; = Y (0it0mi) (GrmOpi) = (56 mm) Gmmbps) = dudys
k=1 k=1

where the third equality is justified since d,,, = 0 for all k # m, and then we need only recall
that 0., = 1. So Ey, By, is the n X n matrix with ij-entry 9;9,;, and therefore E;,, E,,, = Ey,.

Proof of Part (2). Suppose m # p. Again using Definition and equation ([2.14)), the ij-entry
of E;, By, is

n n

EimEpglii = Y [Bimlit[Engli; = D (00mi) (Opd;) = 0,
k=1 k=1
where the third equality is justified since, for any 1 < k < n, either k # m or k # p, and so
either 0,,, = 0 or dx, = 0. Therefore E;,,E,, = O,,. [ |

Let n € N. For any scalar ¢ # 0 define
M;(c) =1, + (c — 1)Ey,
which is the n X n matrix obtained by multiplying the ¢th row of I,, by ¢. Also define
M,;,=L1,-E;-E;; +E; +Ej;;

for i,j € {1,...,n} with ¢ # j, which is the matrix obtained by interchanging the ith and jth
rows of I, (notice that M, ; = M,;). Finally, for 7,5 € {1,...,n} with i # j, and scalar ¢ # 0,
define

Mi,j (C) = In + CE

g
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which is the matrix obtained by adding ¢ times the ith row of I, to the jth row of I,. Any
matrix of the form M, ;(c), M, ;, or M;(c) is called an elementary matrix.

Definition 2.15. Given A € F™*", an elementary row operation on A is any one of the
multiplications

Mi,j<c)A7 Mi’jA, MZ(C)A

More specifically we call left-multiplication by M, ;(c) an R1 operation, left-multiplication by
M, ; an R2 operation, and left-multiplication by M;(c)A an R3 operation. A matriz A’ is called
row-equivalent to A if there exist elementary matrices My, ..., My such that

A’ =M, ---MA.
An elementary column operation on A is any one of the multiplications

AM/ (c), AM]

1’7] )

or AM/ (c).

More specifically we call right-multiplication by MZTJ(C) a C1 operation, right-multiplication by
MZTJ a C2 operation, and right-multiplication by M, (c) a C3 operation. A matriz A’ is called
column-equivalent to A if there exist elementary matrices My, ..., My such that

A'=AM/ ---M].

It’s understood that the elementary matrices in the first part of Definition must all be
m X m matrices, and the elementary matrices in the second part must be n x n. Also, to be
clear, we define M;(c) = [M; ;(c)]" and M] (¢) = [M;(c)]". Finally, we define any matrix A to
be both row-equivalent and column-equivalent to itself.

When we need to denote a collection of, say, p elementary matrices in a general way, we will
usually use symbols My, ..., M,. So for each k =1,...,p the symbol M, could represent any
one of the three basic types of elementary matrix given in Definition [2.15]

Proposition 2.16. Suppose A € F™*" has row vectors ay, ...,a,, € F". Let ¢ # 0, and let
1<p,qg<muwithp#q.

1. M, ,(c)A is the matriz obtained from A by replacing the row vector a, by a, + cay,:
M, ,(c)|a,| =|a,+ca,
2. M, ;A s the matriz obtained from A by interchanging a, and a,:

Amin{p,q} Amax{p,q}

M : =

o : :
Amax{p,q} Amin{p,q}
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3. M, (c)A is the matriz obtained from A by replacing a, by ca,:

M,(c)|a,|=]|ca,|.

Proof.
Proof of Part (1). Fix 1 < i <m and 1 < j < n. Here M, ,(c) must be m x m, so that
M, ,(c) =1, + cE;, 4, since A is m x n. Then

[ - Z pal zk Z + cEgplir[ Al
k=1 k=1
- Z ([Im]zk‘ + c[Egp Zk Z mlik[Alkj + CZ[Eqp]ik (A
k=1 k=1 k=1

= [L.A]ij + ¢ Z OiqOpk [Alk; = [Alij + cdig[Aly),

k=1

where the last equality holds since d,; = 0 for all k # p.
Now, if ¢ # ¢, then d,, = 0 and we obtain

[Mp,tI(C)A} G [A]U

for all 1 < 7 <n, which shows that the ith row vector of M, ,(c)A equals the ith row vector a;
of A whenever ¢ # g. On the other hand if ¢ = ¢, then ;, = d; = 1 and we obtain

[Mp,q(@A] g [Alg; + c[A]y
for all 1 < j < n, which shows that the gth row vector of M, ,(c)A equals the gth row vector of
A plus c times the pth row vector: a; + ca,,.

Proof of Part (2). For 1 <i<mand 1<j <n,

[Mp,qA]ij Z[Mp,q]ik[A]kj = Z[Im - Epp - qu + qu + Eqp]ik [A]kj

k=1 k=1

= Z ([Im]zk - [Epp}ik - [qu]ik + [qu]ik + [Eqp]ik) [A]kj
k=1

= Z Z pp zk: Z qq zk: k] + Z pq zk
k=1 k=1 k=1 k=1

3
3

= LAl — Z OipOph[Alrj — Z ig0qk [ Alrj + Z OipOqk[A

k=1 k=1
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m

+ Z 5iq5pk [A]kj
— (Al — GplAly — 8ia[Aly + Op[Aly + 8[AlL. (2.15)

Now, if ¢ # p,q, then ¢;, = 6;; = 0, and so for any 1 < j < n we find from (2.15)) that
M, ,A];; = [A];;, which shows the ith row vector of M, ,A equals the ith row vector of A.

If i = p, then from ([2.15)) we obtain
[Mp,qA]pj = [A]pj - 5pp [A]pj - 5pq [A]qj + 5pp [A] g T 5pq [A}pj = [A]qj
for all 1 < 57 <n, so that
[[Mp,qA]pl T [Mp,qA]pn} = [[A]ql T [A]qn] = QAg;

and it’s seen that the pth row vector of M,, ;A is the gth row vector of A.
Finally, if i = ¢, then from (2.15) we obtain

[Mp,qA]qj = [A]qj - 5qp [A]pj - 5qq [A]qj + 5qp [A] g T 5qq [A]pj = [A]pj
for all 1 < 5 <n, so that
HMIM]A]ql T [Mp,qA]qn} = [[A]pl T [A]pn] = ayp,

and it’s seen that the gth row vector of M, ;A is the pth row vector of A.
We now see that M, ;A is identical to A save for a swap of the pth and gth row vectors, as
was to be shown. |

Proposition 2.17. Suppose A € F"™*" has column vectors ay,...,a, € F™. Let ¢ # 0, and let
1 <p,q<n withp#q.

1. AM;q(c) is the matriz obtained from A by replacing the column vector a, by a, + ca,:
|: aq }M;q(c) — |: aq_l_cap :|

2. AM;q is the matriz obtained from A by interchanging a, and a,:

[ " Amin{p,g} " Amax{pq} " ]M;q - [ © Bmax{pg} """ Amin{pq} " }
3. AM;—(C) is the matrixz obtained from A by replacing a, by ca,:
[oa, - IMI() = ca, - |.

Proof.
Proof of Part (1). Observing that the row vectors of AT € F**™ are a],...,a!, by Proposition
2.16(1) we have,

M, ,(c)AT =M, ,(c) |a] | =|a, +ca] |,
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and so by Proposition [2.13]

-
AM;’q(c) = (Mp’q(c)AT)T =|a, +ca, | =[--a;+ca, |
Proof of Part (2). By Propositions and [2.16(2),
- aNT T _ QT
T T
. S Anin{p,q} Amax{p,q}
AM,, = (Mp,qA ) = M,, : = :
T T
Amax{p,q} Anin{p,q}
— [ o Bmax{pg) T Amin{pg) }7
and we’re done. [ |

The proof of part (3) of Proposition is left as a problem.

Definition 2.18. Let A = [a;;]mn. The ith pivot of A, p;, is the first nonzero entry (from the
left) in the ith row of A:

Pi = Q,, where r; = min{j : a;; # 0}

A zero row of a matrix A, which is a row with all entries equal to 0, is said to have no
pivot.

Definition 2.19. A matriz is a row-echelon matrix (or has row-echlon form) if the
following conditions are satisfied:

1. No zero row lies above a nonzero row.
2. Gwen two pivots p;, = a;,j, and Dy, = G4y, J2 > J1 whenever is > 1.

In a row-echelon matriz, a pivot column is a column that has a pivot. An upper-
triangular matrix is a square matriz having row-echelon form. A lower-triangular matrix
is a square matriz A for which AT has row-echelon form.

The first condition requires that all zero rows be at the bottom of a matrix in row-echelon
form. The second condition requires that if the first k entries of the row ¢ are zeros, then at
least the first k£ + 1 entries of row ¢ + 1 must be zeros. Thus, all entries that lie below a pivot in
a given column must be zero. Examples of matrices in reduced-echelon form are the following,
with p; entries indicating pivots (i.e. nonzero entries) and asterisks indicating entries whose
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values may be zero or nonzero:

_ - p1 k% ok k%

0 p1 % * % % % * x
0 po * * = p1 * *

0 0 py * *x % % * x
0 0 pg = = 0 py = *

0 0 0 0 p3g * *x = x
, 0 0 0 pg *|, 0 0 pg * =

00 00 0 0 O0 pg =
0 0 0 0 0 0 0 0 pg =

00 00 0 0O0 0 ps
00 000000 0 0 0 0 0 0 0 0 0 0 ps

- . L0 0 0 0 0l

The rightmost matrix is a square matrix and therefore happens to be in upper-triangular form.
Its transpose,

pr 0 0 0 O
* pp 0 0 O
*x x p3 0 Of,
x x x pg 0
k% k% Py

is an example of a matrix in lower-triangular form. The diagonal entries of a square matrix need
not be nonzero in order to have upper-triangular or lower-triangular form, however, so even

x ok k% ok * 00 0 0
0 * *x * = * x 0 00
0 0 * x =« and * % x 0 0
0 0 0 x= = * % *x x 0
0 0 0 0 = * % % x %

represent 5 X 5 triangular matrices regardless of what values we substitute for the asterisks.

Another way to define an upper-triangular matrix is to say it is a square matrix with all
entries below the diagonal equal to 0. Similarly, a lower-triangular matrix is a square matrix
with all entries above the diagonal equal to 0. A diagonal matrix is a square matrix [a;;],
that is both upper-triangular and lower-triangular, so that a;; = 0 whenever 7 # j. Any identity
matrix I,, or square zero matrix O,, is a diagonal matrix, and (trivially) so too is any 1 x 1
matrix [a].

Proposition 2.20. Every matrix is row-equivalent to a matriz in row-echelon form. Thus if A
1S a square matriz, then it is row-equivalent to an upper-triangular matrix.

Proof. We start by observing that any 1 x n matrix is trivially in row-echelon form for any n.
Let m € N be arbitrary, and suppose that an m X n matrix is row-equivalent to a matrix in
row-echelon form for any n. It remains to show that any (m + 1) X n matrix is row-equivalent
to a matrix in row-echelon form for any n, whereupon the proof will be finished by the Principle
of Induction.

Let n be arbitrary. Fix A = [a;;]m+1,- We may express A as a partitioned matrix,

il
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where B = [a;j]m n—1. Observing that [B|a] is an m x n matrix, by our inductive hypothesis it
is row-equivalent to a matrix in row-echelon form [R|c], and thus

2] Bt

[Blbn] = [br - bu]

consists of all zeros, or the pivot has column number greater than the pivot in the mth row,
then the matrix at right in is in row-echelon form and we are done. Supposing neither is
the case, let by, be the pivot for [b|b, ], and let row ¢ be the lowest row in [R |r] that does not
have a pivot which lies to the right of column k. (If £ = 1 then set £ = 0.) We now effect a
succession of R2 row operations,

R
A, - MZ+2,€+1 Tt Mm,m—le+1,m [T‘bi} )

which have the effect of moving [b | b,,] to just below row ¢ without altering the order of the
other rows. (If [b|b, | has pivot in the first column it will become the top row since £ = 0.) We
now have a matrix that either is in row-echelon form, or else rows ¢ and ¢ + 1 have pivots in the
same column.

Suppose the latter is the case. If £ = 0, then the first entries of the first and second rows
are nonzero scalars x; and xy, respectively, and performing the R1 operation M o(—x2/x;) of
adding —x/x; times the first row to the second row will put a 0 at the beginning of the second
row. If £ > 0 we need do nothing, and proceed to partition A’ as follows:

ci1| C
0|C
Now, [0] C] is an m x n matrix, so by our inductive hypothesis it is row-equivalent to a matrix

[0|R'] in row-echelon form. The resultant (m + 1) X n matrix,

C1 C
0 R/ )
is in row-echelon form, and since
A B‘a R\r cl\c cl‘c
“|blb | | b[b ] |O[C|T|0|R

we conclude that A is row-equivalent to a matrix in row-echelon form. |

Now, if

In the example to follow, and frequently throughout the remainder of the text, we will
indicate the R1 elementary row operation of left-multiplying a matrix by M, ;(c¢) by writing

cry + 1 — Ty,

which may be read as “c times row ¢ is added to row j to yield a new row j” (see Prop-osition
2.16(1)). Similarly an R2 operation, which occurs when left-multiplying by M, ;, will be indicated
by

T & Ty,
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which may be read as “interchange rows i and j” (see Proposition [2.16(2)). Finally an R3
operation, which is the operation of left-multiplying by M;(¢), will be indicated by

Cr;y — Ty,
which may be read as “c times row i to yield a new row i” (see Proposition [2.16(3)).

Example 2.21. Using elementary row operations, find a row-equivalent matrix for

01 3 -2
21 —4 3
2 3 2 -1
that is in row-echelon form.
Solution. Call the matrix A. Then,
21 —4 3 21 —4 3 21 -4 3
AR g 1 3 —g| Zmems, g 3 _of ZZEHmTms g g 3 9
2 3 2 -1 02 6 —4 00 0 0
In terms of elementary matrices we computed
My 3(—2)My3(—1)M; A,
multiplying from right to left. |

Example 2.22. A permutation matrix is a square matrix P with exactly one entry equal to
1 in each row and in each column, and all other entries equal to 0. Any such matrix may be
obtained by rearranging (i.e. permuting) the rows of the identity matrix. Of course, I, itself is
a permutation matrix for any n € N, as is the n X n elementary matrix M; ; that results from
interchanging the 7th and jth rows of I,,.

The matrix

P-

_ o O
OO =
o = O

is a 3 x 3 permutation matrix that is obtained from I3 by performing the R2 operation ry <> ro
followed by ry <+ 3. By Proposition [2.16{2), P = M, 3M; oI, or simply P = M, 3M; 5. Thus
for any 3 X n matrix A we have

PA = (My3Mi5)A = My 3(M;»A),

which shows that left-multiplication of A by P is equivalent to performing the following
operations: first, the top and middle rows of A will be swapped to give a new matrix A’; and
second, the middle and bottom rows of A’ will be swapped to give the final product. If a;, as,
and ag are the row vectors of A, then left-multiplication of A by P may be characterized as the
action of assigning new positions to the row vectors of A. Namely, PA sends a; to row 3, as to
row 1, and ag to row 2. Note how these three placement operations correspond to the placement
of the three entries equaling 1 in P: column 1, row 3; column 2, row 1; and column 3, row 2. W
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PROBLEMS

. Show that, for any 1 <+¢ < n, the matrix E,, ;; is symmetric: E'. = E, .

n,i

. What matrix results from right-multiplication BP of an m x 3 matrix B by the 3 x 3 matrix
P in Example [2.22]7 What permutation matrix Q should be used so that BQ permutes the
columns of B the same way that PA permutes the rows of a 3 X n matrix A?

. Prove part (3) of Proposition [2.16]

. Prove part (3) of Proposition [2.17]
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2.4 — THE INVERSE OF A MATRIX

Definition 2.23. An n x n matriz A is invertible if there exists a matrix B such that
AB =BA =1,,

in which case we call B the inverse of A and denote it by the symbol A~'. A matriz that is
not invertible is said to be noninvertible or nonsingular.

From the definition we see that
AA'=ATTA = I,

provided that A~! exists. Observe that O,, does not have an inverse since AO,, = O,, for any
n x n matrix A. Also observe that, of necessity, if A is an n x n matrix, then A~! must also be
n x n.

Proposition 2.24. The inverse of a matriz A is unique.

Proof. Let A be an invertible n x n matrix and suppose that B and C are such that
AB=BA =1, and AC=CA=1,.

From BA = 1I,, we obtain
(BA)C=1,C=C,
and since matrix multiplication is associative by Theorem [2.7]

C = (BA)C = B(AC) = BI, = B.

That is, B = C, and so A can have only one inverse. |
Proposition 2.25. If A has 0 as a row or column vector, then A is not invertible.

Proof. Let A be an n X n matrix with row vectors a;,...,a,. Suppose a; = 0 for some
1 <¢<n. Let
B = [bl e bn]

be any n x n matrix. Since the zi-entry of AB is

it is seen that AB # I,,. Since B is arbitrary, we conclude that A has no inverse. That is, A is
not invertible.
The proof that A is not invertible if it has 0 among its column vectors is similar. |

Theorem 2.26. Let k € N. If Ay,..., A € F™™" are invertible, then Ay --- Ay is invertible
and
(Al"'Ak)_l = Alzl...Al—l_
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Proof. An inductive argument is suitable. The case when k£ = 1 is trivially true. Let k£ € N be
arbitrary, and suppose that the invertibility of k£ matrices Ay, ..., A, € F™™ implies A;--- Ay
is invertible and (Ay---Ap)"t = A1 AT

Suppose that Ay, ..., Ay, are invertible n x n matrices. Let

B=Ay---Ay;; and C :A,;ilu-A;l.
By the inductive hypothesis B is invertible, with
B'=(Ay - Ap)? Akil AT =C,
and so by Proposition
(A1 Ap)(Af - AT = (AB)(BT'ATY) = Ay (BBTHAT!
=ALA'=AA'=1,. (2.17)

(The associativity of matrix multiplication is implicitly used to justify the penultimate equality.)
Next, let
P=A;---A; and Q:A,;1~~Af1.

By the inductive hypothesis Q is invertible, with
Pl=(A A=A AT =Q,
and so by Proposition
(ATL - AT (AL Ap) = (ATLQ)Q ' Arr) = A7 (QQ ) Arn
=ALLAG =A LA =1, (2.18)

From (2.17) and we conclude that A, --- A7" is the inverse for A;---Aj.;. That is,
Ay Ay s invertible and

(Ar-Ap) ™ = A AT
Therefore the statement of the theorem holds for all £ € N by the Principle of Induction. B

We now proceed to establish some results that will help us determine whether a matrix has
an inverse, and then develop an algorithm for computing the inverse of any invertible matrix.
We start by examining elementary matrices, since the calculations involved are much simpler.

Proposition 2.27. An elementary matriz is invertible, with
M,/ (c) = M;j(—c), M;j=M;;, M;'(c)=M;(c").

1,] 7

Proof. Let n € N be arbitrary, let ¢ # 0, and let i,j € {1,...,n} with ¢ # j. Using the fact
that E3, = O, by Proposition 2.14(2), we have

M, ;(—c)M; (c) = (I, — cE;;) (I, + cEj) = I2 + cL,Ej; — cE;1, — cQE?i
=1, + CE]‘Z‘ — CEjz‘ - C2On = ITM
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and
Mi,j(C)Mi’j(—C) = (In + CE]z)(In — CEji) = Ii — CInEﬂ + CEjZ'In — CQEJZZ-
= In — CEﬂ + CEﬂ — Czon = Ina

and therefore M;J-l( —c) is the inverse for M, ;(c).
Next we have

ij =1, -E; -E;; +E; + Eji)2
=1, - E; —E;; +E; +E; — E; + E;E; + E;Ej; — E;E; — E;Ey;
— Bjj + BB + Ej By — BBy — EjEj + By — BBy — BB
+ EyEy + EyEj;i + By — BBy — BB + BB + BB,
—1,-E;—E;; +Ej+E; —E; + E; — E; —E;; + B, — E;; + By
—E;+E; +E; —E; + E;; =1,

where the third equality owes itself to Proposition and the understanding that ¢ # j, and
so for instance Em’E]’j = On, EijEij = On, E“E” = Eiz’7 EijEji = Eiiy and so on. Therefore Mi,j
1s 1ts own inverse.

Finally we show that the inverse for M;(c) is M;(c™!) for any fixed 1 <7 < n and ¢ # 0.
Since E = E;; by Proposition [2.14{(1), we have

M;(e)M;(c ™) = (In+ (¢ = DEg) (I + (¢ — 1)Ey;)
=L+ (' =1DE;i+ (c— DE;+ (c—1)(c' = 1EZ
=I,+(c'=1DE;+(c—1E; — (c—1)E; — (¢ = 1)E; =1,
and similarly M;(c™)M;(c) = 1,,. [ |

Proposition 2.28. Suppose A is row-equivalent to B. Then A is invertible if and only if B is
wnvertible.

Proof. Since A is row-equivalent to B, there exist elementary matrices My, ..., My such that
M, ---M;A =B. (2.19)

Now, suppose A invertible. The matrices My, ..., M, are invertible by Proposition [2.27 and
since A is invertible by hypothesis, by Theorem we conclude that B is invertible.
Next, suppose B is invertible. From (2.19)) we have

A=(M;---M)'B=M;'--M;'B,

where M;',... M, "! are all elementary matrices by Proposition Thus B is row-equivalent
to A, and since B is invertible, the conclusion that A is invertible follows from the first part of
the proof. |
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Proposition 2.29. If A is invertible, then A is row-equivalent to an upper-triangular matrizc
with nonzero diagonal elements.

Proof. Let A be an n x n matrix. Then A is row-equivalent to an upper-triangular matrix
U = [u]n, by Proposition . Suppose that u; = 0 for some 1 < i < n. Then ug, = 0 for
all i < k <n, and in particular u,, = 0 so that the nth row vector of U is 0. Hence U is not
invertible by Proposition [2.25] and since A ~ U it follows that A is not invertible by Proposition
We have now proven that if A is row-equivalent to an upper-triangular matrix with a
diagonal element equalling 0, then A is not invertible. This is equivalent to the statement of
the proposition. |

Theorem 2.30. An n x n matrix A is invertible if and only if A is row-equivalent to 1,,.

Proof. Suppose A € F"*" is invertible. By Proposition A is row-equivalent to an upper
triangular matrix U = [u;;], with nonzero diagonal elements. We multiply each row ¢ of U by
u;;' (which of course is defined since u; # 0) to obtain a row-equivalent upper-triangular matrix
U, with diagonal entries all equal to 1:

M, (uy!) - - M, (u, ) U = U;. (2.20)

In particular the first column of U’ is e; as desired, recalling that I, = [e; --- e,]. If we add
—u19 times the second row of U; to the first row to obtain a row-equivalent matrix U,,

M2,1(—U12)U1 = U2,

we find in particular that U, is upper-triangular with first column e; and second column e,.
Proceeding in this fashion to the jth column, we have an upper-triangular matrix

Ujflz [el ejfl uj uni|

on which we perform a sequence of R1 row operations to obtain a row-equivalent matrix Uj:

j—1
(H Mj,i(_uij)>Uj—l = M1 (—uyj) - M 1 (—uj_1;)U;_1 = Uy, (2.21)

where
Uj=[er e w - ]

Equation (2.21)) holds for j = 2,...,n, and gives U, as

Un = (ﬁ Mm(—um )(H Mn 1z uzn 1 ) (H Mgl —U;2 >U

Observing that U,, = I,,, and recalling (2.20), we finally obtain

In - <H Mn,i(_uzn )(H Mn lz uzn 1 ) <H M2Z —Ui2 ) (H Ml(”z_zl)>U

which demonstrates in explicit terms that U is row-equivalent to I,,. Now, A ~ U and U ~ 1,
imply that A ~ I,, and the first part of the proof is finished.
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The converse is much easier to prove. Suppose that A is row-equivalent to I,,. Since I, is
invertible, by Proposition we conclude that A is invertible. |

This theorem gives rise to a sure method for finding the inverse of any invertible matrix
A. If A € F™" is invertible, then A ~ I, which is to say there exist elementary matrices
My, ..., My such that My ---M;A =1,. Now,

M- -MA=1I, & (M- -M;A)A ' =T,A""
& M- Mj(AA ) =A™
& A'=M, --MI,,

which demonstrates that the selfsame elementary row operations My, ..., M, that transform
A into I, will transform I,, into A~'. In practice we set up a partitioned matrix [ A | L, ], and
apply identical sequences of elementary row operations to each submatrix until the submatrix
that started as A has become I,,. At that point the submatrix that started as I,, will be A~!:

[A|L,] ~ [MJA|MIL,] ~ -+ ~ [Mg---M;A|M;---M1,]=[I,|A"].

The next example illustrates the procedure.

Example 2.31. Find the inverse of the matrix

|

O =
(CRJURITN
=N

Solution. We employ the same sequence of elementary row operations on both A and I3, as
follows.

2 43[100 1 -3 0/0 -1 0

~1 300 1 0] =220y ]2 4 3|1 o0 o] 2ntrom,
02 1j00 1] " 0 21]0 01

[1 -3 0|0 —1 0 1 =3 0[]0 -1 0

0 10 3|1 2 0] 22200 2 1[0 0 1| 2tz

0 21/0 01 0 10 3|1 20

(1 -3 0|0 -1 Lo [ =3 00 -1 0

0 2 1/0 0o 1225100 1 1/2]0 o0 1/2| 2mon,
0 0 -2|1 2 -5 0 0 —-2|1 2 =5

(10 3/2[0 -1 /2], ~[L0 0|34 1/2 -9/4] ,
01 1/2/0 0 1/2f Z——— |0 1 0]1/4 1/2 =3/4| ——
00 —2|1 2 —5| astn=m g 0 2] 1 2 =5

(1 0 0] 3/4 1/2 —9/4

01 0| 1/4 1/2 —3/4].

00 1|-1/2 -1 5/2
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Therefore
3 1 _9
1 2 2
-1 1 1 3
AT = 4 2 4
_1 _ 5
s —1 3
is the inverse of A. [ |

Proposition 2.32. If A € F"*" is invertible, then AT is invertible and
(AT>—1 — (A_I)T.

Proof. Suppose that A € F"*" is invertible, so that A~! exists. Now, by Proposition [2.13]

AAT =1, = (AAH)' =1 = (AHTAT =1,
and

AT'A=1, = A'A)"' =1 = ATAYH =1,
Now,

(A—I)TAT — AT(A—1>T — In

shows that (A~!)T is the inverse of AT. Therefore AT is invertible, and moreover (AT)™! =
(A1), -

Example 2.33. If P € F"*" is a permutation matrix (see Example , then P~ = PT.
To see this, first observe that P may be obtained by permuting the rows of I,, and since
any permutation of n objects may be accomplished by performing at most n transpositions
(i.e. the operation of swapping two objects), we may write P = MM - - - M,,,, where m < n,
and for each 1 < k < m the matrix My, is an elementary matrix of the form M, ; for some
i,7€{1,...,n} with i # j.

Next, we claim that any elementary matrix M, ; is symmetric: 1\/[1T ; =M, ;. To show this,
since

M,; =1, - E; — Ej; + E;; + Ej;,

we need to show that, generally, E;p =E,,, and E;q = E,,. The former is a problem in §2.3, so
we’ll show the latter. Let i,5 € {1,...,n} with ¢ # j. By Definition [2.2| and equation ({2.14]),

[E;—q]ij = [qu]ji = 5jp5qi7

whereas by (2.14]),
[Eqp]ij = 5iq5pj = 5qi5jp = 5jp5qi-

Hence [E,, Jij = [Eg)i;, and therefore B}, = Eg,. It is clear that I, is symmetric, so that I, = I,.

Now, by Proposition [2.3(2) and the foregoing findings,
= In — E“ — Ejj + Eji + Eij = Mi,j-
Finally, we have

P'=(MM,;---M,)" =M, ---M, M/ (Proposition [2.13)



=M,, - MM, = 1\/[;11 oMM
=(MM;---M,)"' =P,

as was to be shown.

(Proposition [2.27)
(Theorem [2.26])

49



20

2.5 — SYSTEMS OF LINEAR EQUATIONS

As usual let F denote a field. A system over F of m linear equations in n unknowns
T1,...,T, is a set of equations of the form

a1 + 199 + e+ ATy — b1
a91%1 + Q29T + -+ + G2,X, = by

Am1T1 + GmaZs +  + -+ QT = bm

for which a,;; € F and b; € F for all integers 1 <i <m and 1 < j < n. The scalars a;; are the
coefficients of the system, and by, ..., b,, are the constant terms. If S; is the solution set of
the 7th equation, which is to say

L1
Si = C | EFY s apnm +apta+ -+ ap, =bi o,

Ty

then the solution set of the system ([2.22) is
S=Sn---nS, =S

or equivalently
T T
S = cleF" | leSforalll <t <m

T T

A system is consistent if its solution set S is nonempty (i.e. the system has at least one
solution), and inconsistent if S = & (i.e. the system has no solution). A consistent system is
dependent if S has an infinite number of elements, and independent if S has precisely one
element. As we will see later, a system of linear equations has either no solution, precisely one
solution, or an infinite number of solutions. There are no other possibilities.

If we define

13 A2 - Q1p x by
Q21 Q22 -+  Q2p T2 by

A= . o |, x=|_"|, and b=| ]|, (2.23)
Am1 Am2 - Amn Ty bm

then the system (2.22)) may be written as the matrix equation Ax = b,
aix a2 - Aip x by
ag1 Qg -+ 49 X2 b2
" = | (2.24)

Am1 Am2 - Qmnp T bm
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In this representation of the system, all solutions x are expressed as column vectors

x
x=1|":1, (2.25)
Tn
so that the solution set S is given as
s} il
S = | eF" cleS;foralll <i<m
T T

As a further notational convenience we may express the matrix equation (2.24) as an
augmented matrix featuring only the coefficients and constant terms of the system,

a1 @iz - Qi | by
Az Gga - Qg | by (2 26)
Am1 Am2 - Amn bm

We see the augmented matrix is just the partitioned matrix [ A |b]. The fact that there are n
columns of coefficients (understood to be the columns to the left of the vertical line) informs us
that there are n variables, and since an n-variable system of equations is fully determined by its
coefficients and constant terms, no information is lost in doing this.
We now consider how the system is affected if we left-multiply the corresponding
augmented matrix [ A |b] by any one of the three elementary matrices M, ;(c), M, ;, or M;(c).
By Proposition [2.16| we know that

M, ;(c)[A|Db]

will effect an R1 operation, specifically adding ¢ # 0 times the ith row of [A |b] to the jth row.
What results is a new augmented matrix [ A’ |b’] corresponding to a new system of equations
in which ¢ times the ith equation has been added to the jth equation. But is the solution set S’
of the new system [ A’ |b’] any different from the solution set S of the original system [A |b]?
In the system [ A |b] the ith and jth equations are

Zaikxk =b; and Zajkxk =, (2.27)
k=1 k=1

which have solution sets S; and S;, respectively; and in the system [A’|b’] the ith and jth
equations are

Z Qi T = bl and Z(C(Zik + (Ijk)l’k = Cb,’ + bj, (228)
k=1 k=1

which have solution sets Sj and 57, respectively. We will show that S; N .S; = S; NS} To start,
we first observe that the ith equation of [A’|b’] is the same as the ith equation of [A |b], so
S; = S; and our task becomes that of showing S; N .S; = 5; N 5.
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Let x € S; N S; be given by ([2.25). Thus the scalars x1, ..., x, are such that the equations

in (2.27)) are satisfied. We have, using (2 ,

n

Z(calk + aji) T = CZ air + Zajkxk = cb; + bj,

k=1 k=1 k=1

which shows that 1, ..., z, satisfy the second equation in and so x € §}. From x € §;
and x € S} we have x € S; N 5%, and therefore S; N S; C 5; N S

Now suppose x € 5; N S}, s0 that the scalars x1, ..., are assumed to satisfy the equations
in - Multiplying the ﬁrst equation by c yields

n
Z ca;LT = cb;,
k=1
so that

Z(caik + aji) Ty — Z cagwy, = (cb; +bj) —cb;
k=1 k=1
obtains from the second equation in ([2.28|), which in turn implies that

n
E ATl = bj
k=1

and so x € §;. Since x € §; also, we conclude that x € S; N S; and therefore S; N S;- cSNnS;.
We have now shown that S; N S;- = 5;NS;, so that

S'=(S;NS)nN (ﬂsk) (SinS;) (ﬂsk):ﬁskzs
k#i,j5 k#i,j k=1

Thus, performing an R1 operation
Mi;(c)[A|b] =[A|b]

on the augmented matrix [A |b] corresponding to a system of equations results in a new
augmented matrix [ A’|b’] that corresponds to a new system of equations that has the same
solution set as the original system. This is clearly also the case whenever performing an R2
operation M, ;[ A | b], since the outcome yields an augmented matrix corresponding to a system
of equations that is identical to the original system except that the ith and jth equations have
traded places. (Again, a system of equations is a set of equations, and sets are blind to order.)
Finally, an R3 operation M;(c)[ A | b] results in an augmented matrix corresponding to a system
of equations that is identical to the original system except that the ¢th equation has been
multiplied by a nonzero scalar ¢, which does not alter the solution set of the ith equation and
therefore does not alter the solution set of the system as a whole. We have proven the following.

Proposition 2.34. Any elementary row operation performed on the augmented matriz [A |b]
of a system of linear equations results in an augmented matriz [ A’ |b'] whose corresponding
system has the same solution set.

Definition 2.35. Two systems of linear equations are equivalent if their corresponding
augmented matrices are row-equivalent.
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In light of Proposition it is immediate that equivalent systems of linear equations have
the same solution set. Thus, to solve a system of linear equations such as , one fairly
efficient approach is to perform elementary row operations on its corresponding augmented
matrix until it is in row-echelon form, at which point it is easy to determine the system’s solution
set. The process is known as Gaussian elimination.

Example 2.36. Apply Gaussian elimination to determine the solution set of the system

3xr+y+4z+ w= 6
2z + 3z +4w =13

y—2z— w= 0
r—y+ 2+ w= 3

Solution. The corresponding augmented matrix for the system is

3 1 4 1] 6
2 0 3 4113
0 1 -2 —-1] 0
1 -1 1 1] 3

We’ll start by interchanging the 1st and 4th rows, since it will be convenient having a 1 at the
top of the 1st column. Also we’ll interchange the 2nd and 3rd rows so as to move the 0 in the
2nd column down to a position where row-echelon form requires a 0 entry.

3 1 4 1] 6 1 -1 1 1] 3

2 O 3 4 13 r1437r4 O 1 -2 -1 O —2r14+rz3—rs
0 1 - 2 - 1 0 24313 2 0 3 4 13 —3r1+ra—ry
1 -1 1 1] 3 3 1 4 11| 6

(1 -1 1 1] 3 (1 -1 1 1| 3

0 1 -2 -1 O —2rg4+r3—rs 0 1 -2 - 0 —2rat+ra—ra
0 2 1 2 7 —4ro+ra—ry O 0 5 4 7

0 4 1 —21| -3 0o 0 9 2|-3

1 -1 1 1 3 (1 -1 1 113

0 1 -2 -1 0| —Zr—=ra [0 1 =2 =110

0 0 5 4 7 "lo 0 5 4|7

0o 0 o0 -2]-2 0 0 0 1|3

The fifth matrix above is in row-echelon form, so technically the last row operation is not
required. On the other hand it certainly is desirable to eliminate any fractions if there’s an easy
way to do it. We have obtained the following equivalent system of equations:

r—y+ z+ w=3
y—2z2— w=0
oz +4dw="7

w=3
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We may now determine the solution to the system by employing so-called “backward substitution.”
Taking w = 3 from the 4th equation and substituting into the 3rd equation yields
52+43)=7 = bz=-5 = z=-L
Taking w = 3 and z = —1 and substituting into the 2nd equation yields
y—2(-1)—3=0 = y=1.
Finally, substituting w = 3, 2 = —1, and y = 1 into the 1st equation yields
r—1+(-1)+3=3 = =2
Therefore the only solution to the system is (z,y,z,w) = (2,1,—1,3), which is to say the
solution set is {(2,1,—1,3)}. |
Example 2.37. Apply Gaussian elimination to determine the solution set of the system

—3x — 5y + 36z = 10
—x + Tz= 5
2.29
r+ y—10z=—-4 (2.29)

Write the solution set in terms of column vectors.

Solution. The corresponding augmented matrix for the system is

-3 =5 36| 10
-1 0 7 >
1 1 —-10] -4

We transform this matrix into row-echelon form:

3 -5 36| 10 1 1 —10] -4 1 1 —10] —4
1 0 7| 5| Byl 0 7| 5| Tl 1 -3 1
1 1 —10]| —4 3 -5 36| 10| R |l —2 6| —2
) 11 —10] —4
AT obg 1 -3 1

00 0| 0

We have obtained the equivalent system of equations

r+y—10z=—-4
y— 3z= 1

From the second equation we have
y=3z+1,

which, when substituted into the first equation, yields
r=10z—y—4=102—3z2+1)—4="7z—-5.

That is, we have x = 7z — 5 and y = 3z + 1, and z is free to assume any scalar value whatsoever.



Any ordered triple [z, y,2]" that satisfies (2.29) must be of the form
[72—5,32+1,2]"
for some z € F, and therefore the solution set is

S={[72-5,32+1,2]" : 2 € F}.

Since
72 —5 ) Tz —5 7
3z+1]| = 11+ 132z = 11+2z|3],
z 0 z 0 1
we may write
-5 7
S = I{+¢t|3 teF
0 1

95

The solution set S in Example [2.37] is called a one-parameter solution set, meaning all
elements of S may be specified by designating a value in the field F for a single parameter

(namely z). The solution set of the system in Example is a zero-parameter solution set.

In general an n-parameter set is a set S whose elements are determined by the values of n

independent variables x4, ..., x, called parameters . If the values of =1, ..

set I (sometimes called the index set), then S has the form

S=A{f(xy,...,2,) s x; € I for each 1 <i < n}.

Here f is a function that pairs each n-tuple (z1,...,x,) with a single element of S.

., x, derive from a
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PROBLEMS

In Exercises 1-4 use Gaussian elimination to determine the solution set of the system of linear
equations. Write all solution sets in terms of column vectors.

1. r+2y— z= 9
2z — z=-2
3r + 0oy +2z2= 22

2. T —z= 1
—2x+3y—z2= 0
—6z + 6y =2

3. x + 24+ w= 4

y— z =—4
r —2y+3z2+ w= 12
2z —2z4+5w=-1

4. 3r—6y— z+ w="7
—r+2y+224+3w=1
dr — 8y — 32 — 2w =6

5. Consider the system of equations
204+ y+ z2=3
rT— y+22=3
xT—2y+rz=4
Determine for which values of A, if any, the system has:

(a) No solution.
(b) A unique solution, in which case give the solution.
(c) Infinitely many solutions, in which case give the solution.

6. Find conditions on the general vector b that would make the equation Ax = b consistent,
where

1 0 -1
-2 3 -1
A= 3 =3 0

2 0 =2
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2.6 — HOMOGENEOUS SYSTEMS

A system of linear equations in which all constant terms are equal to 0 is said to be
homogeneous:
a1121 + a12T2 +- -+ A1 Ty = 0
(2171 + Q222 + -+ + a2,y =0
: : S (2.30)
Am1T1 + mal2 + - - + Ay =0

If we define A and x as in (2.23), which is to say A = [a;;]m,n and x = [2;],1, then we may
write (2.30)) as the matrix equation Ax = 0. At a glance it is clear that setting

r1=-=x,=0

will satisfy the system. This is called the trivial solution, and it may be represented as an
n-tuple (0,...,0), an n x 1 zero vector 0, or some analogous construct.

Theorem 2.38. Let A = [a;j]mn and x = [x;]p1. If n > m, then the homogeneous system
Ax = 0 has a nontrivial solution.

Proof. The theorem states that, for each m € N, the system has a nontrivial solution
whenever n > m. The proof will be accomplished using induction.

We consider the base case, when m = 1. For any n > 1 the “system” consists of a single
equation

a1 Ty + -+ aypx, = 0. (2.31)
Now, if a;; = 0 for all 1 < 57 < n, then any choice of scalars for zi,...,z, will satisfy this
equation, and so in particular there exists a nontrivial solution. On the other hand if aq; # 0 for
some 1 < k < n, then we may choose any scalar values for x1,...,xx_1, g1, ..., T,, and set
1
T — —a— Z aijxj
Wk

so as to satisfy (2.31)). Since there again exists a nontrivial solution, we see that the theorem is
true in the case when m = 1.

Let m € N be arbitrary and suppose that the theorem is true for this m value. Consider the
system

a1y + a1exy +---+  aiT, =0

: : - : (2.32)
Ut1,101 + Qpg1,2T2 + -+ + Qg1 Ty, =0

where n > m + 1. Assume that a;; # 0. If [A]0] is the corresponding augmented matrix, then
the sequence of elementary row operations

M i1 (=ami11/a11) - - - My p(—az /ain)[A | O]



o8

will yield a new augmented matrix [ A’| 0] that has zero entries under a;; in the first column,
which is to say we have attained an equivalent system of the form

anry+ appry +--+ apr, =0
Aoy +--+ ab,x, =0
: : : (2.33)
U102+ F Qg y T =0
Contained within this system is the system

/ / _
0/22.:62 + ttt + aznajn — O

/ / —
Apyy1,22 et A1, n = 0

which has m equations and n variables, where n > m. By our inductive hypothesis this smaller

system has a nontrivial solution (&, ...,Z,), so that there is some 2 < k < n for which z; # 0.
Now, if we let
1 n
i’l = —— aq JA,’ iy

then (Z1,...,&,) will satisfy all the equations in the system . Since is equivalent to
it follows that (&1,...,2,) is a solution to (2.32)), and moreover it is a nontrivial solution
since 7 # 0. We conclude that the theorem is true for m + 1 at least when a7 # 0.

If a;; = 0 but there exists some 2 < k < n for which ay; # 0, we relabel our variables thus:
Y1 = Tk, Y = o1, and y; = x; for j # 1, k. We thereby obtain a system of the form

amryr + apy: +-oo+ anyr oo+ apy, =0

: : : : : (2.34)
A1, kY1 + Am12Y2 + - + Qg1 1Yk + 1,0y =0

From this, much like before, we obtain an equivalent system in which the variable y; has been
eliminated from all equations save the first one. By our inductive hypothesis there exists a

nontrivial solution (¢, ..., ¥,) to the system consisting of the 2nd through (m + 1)st equations
of the equivalent system, whereupon setting
. 1 . . .
= —a—(G12y2 + ot ange + o+ ainbn)
1k

gives an n-tuple (1, ..., y,) that is nontrivial and satisfies . It is then a routine matter to
verify that (21,...,%,) with &; = gy, &, = 01, and &; = gy, for j # 1,k is a nontrivial solution
to .

If a1; = 0 for all 1 < j < n, then by our inductive hypothesis we may find a nontrivial
solution to the other m equations of , and this solution must necessarily satisfy the first
equation.

We have now verified that the theorem is true for m+1 in all possible cases. By the Principle
of Induction, therefore, the theorem is proven. |

A system of equations Ax = b for which b # 0 is nonhomogeneous. The next example
shows the first of many intimate connections between a nonhomogeneous system Ax = b and
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the corresponding homogeneous system Ax = 0 (i.e. the homogeneous system having the same
coefficient matrix A).

Example 2.39. Let Ax = b be a nonhomogeneous system of equations, and let X’ be a solution.
Show that if xq is a solution to the corresponding homogeneous system Ax = 0, then x’ + xq is
another solution to Ax = b.

Solution. We have Ax’ = b and Axy = 0. Let y = x’ 4+ x9. We must show that Ay = b. But
this is immediate:

Ay = A(X' +x¢) = AX' + Axg=b+ 0 =b,
using the Distributive Law of matrix multiplication established in §2.2. |
Given any nonempty S C F” and nonzero x € F", we define a new set
x+S={x+y:yeS}
called a coset of S. We now improve on Example with the following more general result.
Theorem 2.40. Let Ax = b be a nonhomogeneous system of linear equations with solution set

S, and let Sy, be the solution set of the corresponding homogeneous system Ax = 0. If x,, is any
particular solution to Ax = b, then S = x, + Sj.

Proof. Suppose that x, is a particular solution to Ax = b. Let x’ € S be arbitrary. Then
AX —x,) =Ax' —Ax,=b—-b=0
shows that x’ — x,, is a solution to Ax = 0 and hence x’ — xp € Sj. Since
X =x,+ (x' —x,) € {x, + % : x5, € S} =%, + Sh,

we conclude that S C x, + Sj.
Next, suppose that x" € x, + S}, so X’ = x,, + x;, for some x;, € Sj. Since

Ax' = A(x, +x5) = Ax, + Ax, =b+0 = b,

we conclude that x’ € S and hence x, + 5, C S.
Therefore S = x,, + S},. [ |

To fully determine the solution set of any nonhomogeneous system Ax = b, according to
Theorem it suffices to find just one solution to Ax = b (called a particular solution)
along with the complete solution set of Ax = 0.

We close this chapter with a final result that will later become bound up in the Inverse
Matrix Theorem, which is a theorem that will bring together over a dozen seemingly disparate
statements that all turn out to be equivalent.

Proposition 2.41. If A € F™*" is invertible, then the homogeneous system Ax = 0 has only
the trivial solution.
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Proof. Suppose A € F"*" is invertible. Clearly 0 is a solution to Ax = 0, and it only remains
to show it is a unique solution. Suppose that xg is a solution to the system, so that Axy = 0.
Since A~! exists, we have

Axg=0 = A_l(AXO) = A_l() = (A_lA)XO =0 = I,xx=0 = x,=0.

Thus any x( given to be a solution to the system must in fact be 0, proving uniqueness. |
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VECTOR SPACES

3.1 — THE VECTOR SPACE AXIOMS

Let I be a field. In practice F is usually either the real number system R or the complex
number system C, but in any case it is a set of objects that obey the field axioms given in §1.1.

Definition 3.1. A vector space over F is a set V' of objects, along with operations vector
addition V x V — V (denoted by +) and scalar multiplication F x V — V (denoted by -
or juzxtaposition) subject to the following axioms:

VSl.u+v=v+uforanyu,veV

VS2. u+ (v+w)=(u+v)+w foranyu,v,weV

VS3. There exists some 0 € V' such that u+0 =u for anyu eV

VS4. For each u € V there ezists some —u € V' such that u+ (—u) =0
VS5. For anya € F andu,v €V, a(u+v) =au+av

VS6. For any a,b € F andu €V, (a +b)u=au+ bu

VS7. For any a,b € F andu € V, a(bu) = (ab)u

VS8. ForallueV, lu=u

The elements of V' are called vectors and the elements of the underlying field F are called
scalars.

A real vector space is a vector space over R, and a complex vector space is a vector
space over C. A Euclidean n-space over F is specifically a vector space consisting of n-tuples
[z1,...,2,], where 2, € F for all 1 < k < n. In general a Euclidean space is any Euclidean
n-space over I for some unspecified n € N and field F. If F = R, we obtain a real Euclidean
space; and if F = C, we obtain a complex Euclidean space.

The object 0 mentioned in Axiom VS3 is called the zero vector, and the vector —u
mentioned in Axiom VS4 is the additive inverse of u.

We have in the statement of the definition that 4+ : V' x V' — V. That is, the vector addition
operation + takes any ordered pair (u,v) € V x V and returns an object u+ v € V. Thus
u + v must be an object that belong to the set V! Similarly the scalar multiplication operation
is given to be a map - : F x V' — V| which means scalar multiplication takes any ordered pair
(a,u) € F x V and returns an object a - u = au € V. Thus au must also belong to V! Some
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books state these facets of the definition of a vector space as two additional axioms:

ut+veV foranyuveV (3.1)

and
au€V foranya € F anduecV. (3.2)

We call (3.1)) the closure property of scalar multiplication, and (3.2) the closure property
of addition. When property (3.1]) holds for a set V| we say that V' is closed under addition;
and when property (3.2)) holds we say V is closed under scalar multiplication.

Remark. A set V together with given operations + and - defined on V' x V and F x V,
respectively, is a vector space if and only if the eight axioms VS1-VS8 and the two closure

properties (3.1) and (3.2) are all satisfied!

Some seemingly “obvious” results actually require careful reasoning to prove their validity in
the context of vector spaces, as the next two propositions show.

Proposition 3.2. Let V' be a vector space, u € V, and a € F. Then the following properties

hold.
1. 0u=20
2.a0=0

3. Ifau=0, thena=0o0oru=0

Proof.
Proof of Part (1). Since u € V and 0 € F, we have Ou € V by the closure property (3.2). Now,
Ou=0u+0 Axiom VS3
=0u+ [u+ (—u)] Axiom VS4
= (O0u+u)+ (—u) Axiom VS2
= (0u+ 1u) + (—u) Axiom VS8
=0+ 1u+ (—u) Axiom VS6
=lu+ (—u) Axiom F3
=u+(—u) Axiom VS8
=0. Axiom V5S4
The proofs of parts (2) and (3) are left to the exercises. [

Proposition 3.3. If V is a vector space and u € V, then (—1)u = —u.

Proof. Suppose that V is a vector space and u € V. Then (—1)u € V, and
(—Du=(-1u+0 Axiom VS3
—lu+ [u+ (—u)] Axiom VS4
(—Du+u] + (—u) Axiom VS2
(—Du+ 1u] + (—u) Axiom VS8

(
[
[
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=(-14+1Du+ (—u) Axiom VS6
=0u+ (—u) Axiom F4

=0+ (—u), Proposition [3.2(1)
= —u. Axiom VS3

As with Euclidean vectors we define vector subtraction by
u—v=u+(—v)

for any u,v € V.

The objects belonging to a vector space are invariably called vectors, but they could be any
kind of mathematical entity either concrete or abstract. They often are the Euclidean vectors
encountered in Chapter 1, but they could also be matrices, polynomials, functions, or other
objects. This is part of the power of linear algebra.

Example 3.4. The set of coordinate vectors
T
R" = : T1,..., Ty €ER 3
Tn

together with the definitions of vector addition and real scalar multiplication as given in §1.2, is
easily verified to be a vector space over R. Similarly, the set of coordinate vectors

<1
C" = : 21,2, €C
Zn

with vector addition and complex scalar multiplication defined in analogous fashion to R", is a
vector space over C. Important: the underlying fields of R™ and C" are always taken to be R
and C, respectively, unless otherwise specified! |

Example 3.5. The set F"*" of all m x n matrices with entries in I is a vector space under the
standard operations of matrix addition and scalar multiplication given by Definition 2.1} In
particular the set R™*™ of m x n matrices with real-valued entries is a real vector space, and
the set C™*™ of m x n matrices with complex-valued entries is a complex vector space. |

Example 3.6. Given an integer n > 0, let P,(F) be the set of all polynomials of a single
variable x with coefficients in F and degree at most n; that is,

Po(F) ={ao +arx+ -+ a, 12" '+ a,2™ :a; €F for 0 <i < n}.
By definition the polynomial 0 has degree —oo, and so 0 € P, (IF) in particular. We have
Po(R) ={a:a € R} =R,
Pi(R) ={a+bx:a,beR},
Po(R) = {a + bx + cz® : a,b,c € R}.
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If we define polynomial addition and scalar multiplication in the customary fashion by

(ap + a1z + -+ -+ apx™) + (bg + byx + - - - + bya™)
= (agp + bo) + (ay + b))z + -+ + (an + by)a™,

and

clag+ax+ -+ a,z"™) = cag + carx + - - - + ca,z”,

then it is straightforward to verify that P,(F) is a vector space. |

Example 3.7. Let S C F, where as usual F is some field. Let F(S,F) denote the set of all
functions S — F. Given f € F(S,F) and ¢ € F, we define scalar multiplication of ¢ with f as
yielding a new function cf € F(S,F) given by

(cf)(x) = cf(x)

for all x € S. If f,g € F(S,F), we define addition of f with g as yielding a new function
f+g¢€ F(S,F) given by
(f +9)(z) = f(z) + g(z)

for all x € S. These operations are consonant with conventions established in elementary
algebra, and it is straightforward to verify that F(S,F) is in fact a vector space. The zero vector
is the function 0 given by 0(z) = 0 for all x € S. The additive inverse of any f € F(S,F) is the
function — f given by (—f)(x) = —f(x), since

(f + (=N)(x) = f2) + (=) = f(z) + (= f(z)) = 0= 0(x)

for all x € S, and hence f + (—f) =0.
If a set S is not specified at the outset of an analysis involving functions fi, fa, ..., f,, then
we take

S = (| Dom(f;) = Dom(f;) N Dom(f) N -+ N Dom(f,)
i=1
and carry out the analysis in the vector space F(S,F) provided that S # . |

Example 3.8. Show that the collection of functiong]]
C={f:R—>R|f(2) =0}
is a vector space over R under the usual operations of function addition and scalar multiplication

(see Example [3.7).

Solution. First, it’s worth noting that since F(R,R) is the set of all real-valued functions with
domain R, we have C C F(R,R).
Let f,g,h € C and a,b € R. Let € R be arbitrary. We have f+ g € C and af € C since

(f+9)(2)=F2)+92)=0+0=0 and (af)(2)=af(2) = a(0) =0,

4Sets of functions (as well as sets of sets) are often referred to as “collections” or “families” in the mathematical
literature.
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and so there is closure under addition and scalar multiplication. In what follows we make
frequent use of the field axioms of the real number system (see §1.1).
By the Commutative Property of Addition we have

(f +9)(x) = f(2) + g(z) = g(x) + f(2) = (g + [)(2),

so that f 4+ g = ¢+ f. Axiom VSI1 holds.
We have
f(x) + [g(x) + h(z)] = [f () + g(x)] + h(z)
by the Associative Property of Addition, and thus f + (¢ + h) = (f + ¢g) + h. Axiom VS2 holds.

Let o be the zero function. That is, o(xz) = 0 for all x € R. Since 0(2) = 0 we see that o € C.
Now,

(0+ f)(z) =o(z) + f(z) =0+ f(z) = f(z)
and
(f +0)(z) = f(z) + o(x) = f(x) + 0 = f(=z),
and so o+ f = f+ 0= f. Axiom VS3 holds.
As usual — f is the function given by (—f)(z) = — f(x), so in particular (—f)(2) = —f(2) =0
implies that —f € C. Now,
(=f + @) = (=)@)+ f(z) = —f(z) + f(z) =0 =o(x)
shows that —f 4+ f = o. Similarly f + (—f) = 0. Axiom VS4 holds.
By the Distributive Property,
(a(f +9)) (@) = a(f + g)(z) = a[f(z) + g(z)] = af(z) + ag(x)
= (af)(z) + (ag)(z) = (af + ag)(z),
which shows that a(f + ¢g) = af + ag. Axiom VS5 holds.
Again by the Distributive Property,
((a+b)f)(x) = (a+b)f(z) = af(x) + bf () = (af)(x) + (bf)(x) = (af +bf)(2),
so (a+b)f =af +bf. Axiom VS6 holds.
By the Associative Property of Multiplication,
(a(bf))(z) = a(bf)(z) = a(bf(x)) = (ab) f(x) = ((ad)f)(2),

so a(bf) = (ab)f. Axiom VS7 holds.
Finally, since 1 € R is the multiplicative identity, we have (1f)(z) = 1f(z) = f(x). This
shows that 1f = f, and Axiom VS8 holds. |
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PROBLEMS

In Exercises 1-4 a set of objects V is given, along with definitions for operations of vector
addition and scalar multiplication. Determine whether or not V' is a vector space under the
given operations. If it is not, indicate which axioms and closure properties fail to hold.

1. V = R?, with vector addition and scalar multiplication defined by
A A PR B A S [
Ug (%) Ug + V2 Us 9cus
2. V =R? with vector addition and scalar multiplication defined by
Uy v |ur+v+3 up | |cuy
|:U2:| + L}J - [uz + vy + 3} and C|:U2:| - |:CU2:| '
3. V is the set of 2 x 2 matrices of the form
a 0
1 b
with the standard operations of matrix addition and scalar multiplication.

4. V is the set of real-valued one-to-one functions with domain (—oo, 00), together with the
zero function x — 0. For any f,¢g € V and ¢ € R, the sum f + ¢ and scalar product cf are
defined in the standard way.

5. Prove part (2) of Proposition |3.2]

6. Prove part (3) of Proposition [3.2]
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3.2 — SUBSPACES

Definition 3.9. Let V' be a vector space. If W C V is a vector space under the vector addition
and scalar multiplication operations defined on V- x V and F x V| respectively, then W 1is a
subspace of V.

In order for W C V to be a vector space it must satisfy the statement of Definition
to the letter, except that the symbol W is substituted for V. Straightaway this means we
must have W # & since Axiom VS3 requires that 0 € W. Moreover, vector addition must
map W x W — W and scalar multiplication must map F x W — W which is to say for any
u,v € W and a € F we must have u+ v € W and au € W. These observations prove the
forward implication in the following theorem.

Theorem 3.10. Let V' be a vector space and @ # W C V. Then W is a subspace of V if and
only ifau € W andu+v e W foralla € F and u,v e W.

Proof. We need only prove the reverse implication. So, suppose that for any a € F and
u,v € W, it is true that aqu € W and u+ v € W. Then vector addition maps W x W — W
and scalar multiplication maps F x W — W, and it remains to confirm that W satisfies the
eight axioms in Definition [3.1 But it is clear that Axioms VS1, VS2, VS5, VS6, VS7, and VS8
must hold. For instance if u,v € W, then u+ v = v + u since u,v € V and V is given to be a
vector space, and so Axiom VS1 is confirmed.

Let u € W. Since au € W for any a € F, it follows that (—1)u € W in particular. Now,
(—=1)u = —u by Proposition [3.3] and so —u € W. That is, for every u € W we find that
—u € W as well, where u+ (—u) = —u + u = 0. This shows that Axiom VS4 holds for W.

Finally, since au € W for any a € F, it follows that Ou € W. By Proposition we have
Ou=0, so 0 €W and Axiom VS3 holds for W.

We conclude that W C V is a vector space under the vector addition and scalar multiplication
operations defined on V' x V and F x V, respectively. Therefore W is a subspace of V' by
Definition [3.91 |

The following result is immediate, and provides a checklist that commonly is employed to
quickly determine whether a subset of a vector space is a subspace.

Corollary 3.11. Let V be a vector space, and let W C V. Then W is a subspace of V' if the
following conditions hold:

1.oeWw.
2.aueW forallueW anda eF.
.u+veW foralluveW.

In practice, to determine whether any given subset of a vector space V' is a subspace the
first thing one usually checks is whether or not it contains the zero vector 0. If W C V' does
not contain 0, then it is not a subspace.



68

Example 3.12. Consider the set

x
U= y| eR® :ayz=0
z

Certainly U is a subset of R3, but is it a subspace of R?*? Two vectors belonging to U are

1 0
u, =10 and uy = |1/,
0 1

since (1)(0)(0) =0 and (0)(1)(1) = 0. However, the vector

1 0 1
U1+UQ: 0 + 11=11
0 1 1

does not belong to U since (1)(1)(1) # 0. Since U is not closed under vector addition, it is not
a subspace of R3. |

Example 3.13. Consider the set Skw,(R) of n x n skew-symmetric matrices with entries in R:
Skw,(R) = {A ¢ R™": AT = —A}.
Clearly Skw,(R) is a subset of the vector space R™*" and since O, = —0,, we see that Skw, (R)
contains the “zero vector” of R"*". Let A, B € Skw,(R) and ¢ € R. By Proposition
(cA)T =cAT =c¢(—A) = —(cA)

and
(A+B)'=A"T+B"=-A+(-B)=—(A+B),

which shows that cA € Skw,(R) and A + B € Skw,(R). Therefore Skw,(R) is a subspace by
Corollary [3.11] [ ]

Example 3.14. As we saw in §2.5, a system of m linear equations in n unknowns

1121 + a19T2 + -+ a1,x, = by
a91%1 + Q29T + -+ -+ G2,%, = by

: : : (3.3)
A1 T1 + Ao + -+ A @y, = by,
may be written as a matrix equation Ax = b, where
aix a2 - Aip T by
PO T I LS I L (3.4)

Am1 Am2 *° Qmnp T bm
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Here each vector x in F” is represented by a column matrix as in (3.4]), so that

L1
F" = : X1y, Ty €F

T

As previously established, a vector

is a solution to Ax = b if and only if substituting s for x in Ax = b makes the equation true,
and this will be the case if and only if the n-tuple (sq,...,s,) is a solution to the system of

equations (3.3)).

Now, if we set b = 0, we obtain the matrix equation Ax = 0 representing the homogeneous
system in which the right-hand side of every equation in (3.3)) is 0. The solution set for Ax =0
is the set

S={xelf": Ax =0},

so clearly S C F". But is S a subspace of F"? Certainly AO = 0 is true, so 0 € S and S # &.
To determine definitively whether S is a subspace we use Corollary [3.11}
Let s € S and a € F. Since s is in S we have As = 0, and then

A(as) =a(As)=a0=0
shows that as € S. Next, if s,s’ € S, so that As =0 and As’ = 0 both hold, then
As+s)=As+As=0+0=0

shows that s + s’ € S also.
Therefore S is a subspace of F" by Corollary [3.11] We call S the solution space of the
system Ax = 0. ]

Definition 3.15. The null space of A € F™*" is the set
Nul(A) = {x € F" : Ax = 0}.

Proposition 3.16. If A € F"*" then Nul(A) is a subspace of F™.

Proof. This follows easily from the proceedings of Example |3.14]since the null space of a matrix
A corresponds to the solution space of the homogeneous system of linear equations Ax =0. W

Definition 3.17. Let V' be a subspace of R™. The orthogonal complement of V is the set
Vi={xecR":x-v=0forallveV}

Proposition 3.18. If V is a subspace of R™, then V* is also a subspace of R".
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Proof. Let V be a subspace of R"”. Suppose x,y € V. Then for any v € V we have
(x+y) - v=x-v+y - v=0+0=0,
which shows that x +y € V+. Moreover, for any ¢ € R we have
(ex)-v=rc(x-v)=1¢(0)=0

for any v € V, which shows that cx € V. Since V+ C R is closed under scalar multiplication
and vector addition, we conclude that it is a subspace of R". |

PROBLEMS

1. Determine whether the set
W ={[z,y,2]" 1y =2z — 2}

is a subspace of R3. If it is, prove it; otherwise show how it fails to be a subspace.

2. Prove or disprove that the set is a subspace of the vector space R**? of all 2 x 2 matrices
with real entries.

(a) {AeR¥: AT =A}
(M{ﬁi}mhﬁR}
O] acs]

(@{ﬁf;yawek}

3. Determine whether Sym, (R), the set of n X n symmetric matrices with real entries, is a
subspace of R™*", If it is, prove it; otherwise show how it fails to be a subspace.

—~
@)
SN—
—N—
|OQ|

4. Prove or disprove that the set is a subspace of the vector space F(R,R) of all real-valued
functions f with domain R.

a) {f € F(R,R): f(x) <0 for all € R}
) - f(0) =0}

) - f(0) =9}

) : f is a constant function}
) :

(
(
c) {f € F(
(
(

f(z) = acosx + bsinz for some a,b € R}
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3.3 — SUBSPACE SUMS AND DIRECT SUMS

Definition 3.19. Let U and W be subspaces of a vector space V. The sum of U and W 1is the
set of vectors

U+W={veV:v=u+w for someueclU and we W}.

More generally, if Uy, ..., U, are subspaces of V', then the sum of Uy, ..., U, is the set of

vectors
n n
ZUk: {VEV:V:z:ukforsomeu;€ € Uk}.

k=1 k=1

Equivalently we may write
U+W={u+w:uelUandweW}
for subspaces U and W of V', and

> { Yo e i
k=1 k=1
for subspaces Uy, ..., U, of V.

Proposition 3.20. If Uy,...,U, are subspaces of a vector space V over F, then Uy + --- + U,
15 also a subspace of V.

Proof. Suppose Uy, ..., U, are subspaces of a vector space V', and let U = Uy +- - -+ U,,. Clearly
0c€U,soU# @. Let u,v € U, so that

n n
u= E u, and v= E Vi
k=1 k=1

for vectors ug, vy € U, 1 < k < n. Now, u, + v; € Uy since each Uy is closed under vector

addition, and hence
n

u—f—v:Z(uk—kvk)EZUk:U
k=1

k=1
and we conclude that U is closed under vector addition. Also, for any ¢ € F we have cuy, € Uy,
since each Uy is closed under scalar multiplication, and hence

n

cu:Zcukezn:Uk:U
k=1

k=1

and we conclude that U is closed under scalar multiplication. Therefore U is a subspace of V

by Corollary [3.11] |
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Definition 3.21. Let U and W be subspaces of a vector space V.. We say V is the direct sum
of U and W, written V=U & W, if V=U+W and UNW = {0}.
More generally, let Uy, ..., U, be subspaces of V. Then V 1is the direct sum of Uy, ..., U,,

written
v-Du
k=1

if V=>7_,U and
U; N Ui = {0} (3.5)

ki
foreachi=1,... n.

In (3.5)) it’s understood that the sum is taken over all 1 < k < n not equal to 7; that is,
ZUk:U1+"'+Uifl+Ui+1+"'+Un-
kesti

Thus, in particular, if Uy, Us, and Us are subspaces of V', then

3
V=Pu.=tiel,eU

k=1
if and only if
V=U+Uy+Us
and
UiN(Uz+Us) = Uy N (Uy + Us) = Us N (U + Uz) = {0},

Proposition 3.22. Let U and W be subspaces of V.. Then V- =U @& W if and only if for each
v € V there exist unique vectors u € U and w € W such that v=u+ w.

To say there exist unique vectors u € U and w € W such that v = u+ w means, specifically,
that if u,u’ € U and w,w’ € W are such that v=u+ w and v = u’ + w’, then we must have
u=u’ and w = w’. We now prove the proposition.

Proof. Suppose that V =U & W, and let v € V. Since V = U + W there exist some u € U
and w € W such that v =u+w. Suppose v’ € U and w’ € W are such that v =u'+w’. Then

O=v—-v=(ut+w)—(u+w)=(u—-1u)+(w-w),
which implies that
u—u=w-w

and hence u—u’,w'—w € UNW sinceu—u’ € U and w —w € W. However, from V =U® W
we have U N W = {0}, leading to

u—u=w-—-w=0

and therefore u' = u and w = w.
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Conversely, suppose that for each v € V' there exists unique vectors u € U and w € W such
that v=u+w. Then v € U + W, so clearly V = U + W. Suppose that v.€ U NW. Then we
may take u € U to be v, and w € W to be 0, so that

ut+tw=v+0=v;

on the other hand if we let W' = 0 and w = v, then u' € U and w € W are such that
v =u’ +w’. By our uniqueness hypothesis we must have u = u’ and w = w’. That is, u =0
and w = 0, so that v = 0 and we obtain v € {0}. From this we conclude that U N W C {0},
and since the reverse containment is obvious, we find that both UNW = {0} and V =U + W
are true. Therefore V =U & W. |

Proposition and its proof are presented largely for pedagogical reasons. The more
general result is given next, though it takes a bit more work to prove and will have limited
applicability in the next few chapters.

Theorem 3.23. Let Uy, ..., U, be subspaces of V.. ThenV =U; & --- @ U, if and only if for
each v € V there exist unique vectors uy € Uy, ..., u, € U, such that v=u; +---+ u,.

Proof. Suppose that V =U, @ ---® U,. Let v € V, so for each 1 < k < n there exists some
uy, € Uy, such that v = )"} u,. Now, suppose that v =", _ uj, where u}, € Uy, for each k.
Fix 1 <i <n. We have u, — u; € U;, and from

n

Z u, — uy) Zuk—Zuk—v—v—O

k=1
we obtain
u—u; = Z u — uy) EZUk
ki k#i
That is,
u;, —u; € U, ﬂZUk {0},
k#i
so that u, —u; = 0 and hence u, = u;. Since 1 < i < n is arbitrary we conclude that
u) =uy,...,u, = u,, and therefore the vectors u; € Uy, ..., u, € U, for which v =737 u
are unique.
Next, suppose that for each v € V there exist unique vectors u; € Uy, ..., u, € U, such that

v =3 1, ug. Then it is clear that

V= Z Us. (3.6)
k=1

Fix 1 <17 < n, and suppose that
VvV E UZ N Z Uk
ki
Thus v € U; implies we have u = ZZ:1 uy, where u;, € Uy is 0 for k #£ ¢, and u; = v € U;. On
the other hand v € Zk# Uy, implies that, for each k # i there exists some u), € Uy such that
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v =1, and so if we let uj € U; be 0, we obtain v = 3"/, u;. Now, by our uniqueness
hypothesis it must be that u; = uj, for each 1 < k < n. In particular,

v=u=u, =0,

and so v € {0}. This shows that U; N~ , Uy C {0}, and since the reverse containment is
obvious, we conclude that
U; Ny Ui ={0}. (3.7)
kit
Now, the equations (3.6) and (3.7)) imply that V =U; & --- & U,. |



3.4 — LINEAR COMBINATIONS AND SPANS

Definition 3.24. A vector v is called a linear combination of the vectors vy,
exist scalars cq, ..., c, such that

V=cVi+--+c, vy, = E C;Vi.

Example 3.25. Define u,v,w € R? by

2 0 4
u=|-3(, v=| 7|, and w=|1
5 -1 9

Show that w is a linear combination of u and v.

Solution. We must find scalars a and b such that

2a 0 2a
w=au+bv=|-3a|+| 7|=|-3a+T7b
da —b b5a — b
That is, we need a and b to satisfy
2a 4
—3a+T7b|=|1],
5a — b 9
which is the system of equations
2a =4
{—3a +7h=1
S5a — b=9

75

...,V if there

From the first equation we have a = 2. Substituting this into the second equation yields
—6+7b = 1, or b = 1. Now we must determine whether (a,b) = (2,1) satisfies the third

equation, in which general is unlikely but in this case works:
b5a—b=9 = 5(2)—1=9 = 9=09.

So w = 2u + v, and therefore w is a linear combination of u and v.

Example 3.26. Define u,v,w € R? by

2 0 4
u=|-3(, v=| 7|, and w=|-13
5 -1 9

Show that w is not a linear combination of u and v.
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Solution. We must show that there exist no scalars a and b such that

4 2a
—13|=w=au+bv=|-3a+7b|,
9 5a — b

which sets up the system of equations
2a = 4
{—3& +7b=—-13
ba — b= 9

The first equation gives a = 2. Substituting this into the second equation yields —6 + 7b = —13,
or b = —1. However, putting (a,b) = (2, —1) into the third equation yields a contradiction:

Ba—b=9 = 52)—(-1)=9 = 11=0.

Hence the system of equations has no solution, which is to say there are no scalars a and b for

which w = au + bv. [ ]
Definition 3.27. Let V' be a vector space and vy, ...,v, € V. We say vectors vy,...,v, span
V, or V is spanned by the set {vy,...,v,}, if for every v € V there exist scalars ci, ..., ¢y

such that v =civy+ -+ ¢, vy,

Thus vectors vq,...,v, span V if and only if every vector in V is expressible as a linear
combination of vy, ..., v,. Define the span of vy,...,v, to be the set
n
Span{vy,...,v,} = {ZCM' SCl, ..., Cp € F} ,
i=1
which is to say Span{vy,...,v,} is the set of all possible linear combinations of the vectors

Vi,...,v, € V. It is easy to see in light of the closure properties (3.1) and (3.2]) that V is
spanned by {vy,...,v,} if and only if

V = Span{vy,...,v,}.

If S is an arbitrary subset of a vector space V over F, then Span(S) is defined to be the set
of all linear combinations of finitely many vectors belonging to S. Precisely put,

n
Span(S) = {chvk neN, vy,...,vy,e S, and ¢i,...,c, € F} )

k=1
This definition allows us to speak meaningfully of the span of an infinite set, in particular.

Example 3.28. Determine whether the vectors

Vi =

—_ = =

2 3
, Vo = 2, V3 = 0
0 0

span R3.

5Some books say v1,...,v, generate V, or V is generated by the set {Vvi,...,vp}.
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Solution. Let
T
x=|y|eR’
z

We attempt to find scalars c1, ca, c3 € R such that ¢;vy + covae + c3v3 = Xx; that is,

1 2 3 T
1 1 + Co 2 + c3 0 = Yy
1 0 0 z

This yields the system

c1 + 2¢9 =y

{cl 4+ 2¢0 + 3¢5 =2
C1 =z

which indeed has a solution:

(01702703): Zay_zax_y .
2 3

Thus every vector in R? is expressible as a linear combination of v, vs, and v, which shows
that the set {vi, vy, v3} spans R |

Example 3.29. Determine whether the vectors

2 4 8
Vi = —1 s Vo = 1 s V3 = —1
3 2 8

span R3.
Solution. Let

x=|y|eR
z

We attempt to find scalars ¢y, ¢o, c3 € R such that ¢; vy + covo + c3vy = x. This yields the system

2c1 + 4cy + 8cs =
{—C1+ Cg— C3=1Y
3C1+202—|—863:Z

This can be cast as an augmented matrix and manipulated using elementary row operations:

2 4 8|z 11 -1y -1 1 -1 y
-1 1 —1]y|~ 24 8lxl~| 06 6|2y+a
32 8|z 32 8|z 05 5|3y+z
1 -1 1| —y 1 -1 1 —y
~0 1 1| 2=~ l0 101 fyte
0 5 5|3y+z 0 0 0]3y+z—5(2")
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We see that in order for x to be expressed as a linear combination of vq, vy, and v3, we need =,

y, and z such that
2
3y+z—5( y;x> =0,

or — 8y — 6z = 0.

or

This leads to 1 = 0 if we choose x = 0, y = 0, and z = 1, for instance. That is, we cannot
express

0

0

1

as a linear combination of vy, vy, and v3. We conclude that {vy, vy, v3} does not span R*. W

Proposition 3.30. Let V' be a vector space. If vq,...,v, € V, then W = Span{vy,...,v,} is
a subspace of V.

Proof. Suppose vy,...,v, € V. First we observe that
0=0vi+---+0v, € W.
Now, let a € F, and let u € W so that there exist ¢y, ...,c, € F such that

u=cvy+- -+ c,vy.
Since

au = a(c1vy + -+ ¢, V) = acyvy + - - 4 acy vy,

for acy, ..., ac, € F, it follows that au € W also.
Next, let u,v € W. Then there exist ¢q,...,¢,,dq,...,d, € F such that

u=cvi+---+c,vp, and v=dvi+---+d,v,,
and then
ut+v=_(c+d)vi+--+(cp +dn)vp

for ¢; +dq,...,c, +d, € F shows that u+ v € W also.
Therefore W is a subspace of V' by Corollary |

Proposition 3.31. Let V' be a vector space, and let S = {vy,...,v,} CV. Ifa € F is nonzero,
then

Span(S) = Span ((S \{vi})U{v; + avj})
foranyi,j € {1,...,n} with i # j.

Proof. Suppose a € F\{0}, and let i,j € {1,...,n} with i # j. Let T'= (S\{v:}) U{v,+av;},

and note that T is the set obtained from S by replacing v; with v; +av;. Suppose v € Span(S),
so that v = Zzzl ¢ vy for some cq,...,c, € F. Now,

v=cv,+cv;+ E v = ci(vi +avy) + (¢j — ac;) v, + E CLVE,
k#i,5 k#i,j
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which shows that v is a linear combination of the elements of T" and hence v € Span(T).
Next, suppose that v € Span(T'), so there exists ¢i, ..., ¢, € F such that

v =¢(v; +avj) + Z Ck Vi,
ki

n
v = g CuVE
k=1

with ¢, = ¢ for k # j and c; = ac; + ¢j, which shows that v is a linear combination of elements
of S and hence v € Span(9).

Since Span(S) C Span(7) and Span(7) C Span(S), we conclude that Span(S) = Span(T')
as was to be shown. |

and hence
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PROBLEMS

o[ it we] 7]

Prove or disprove that Span{u;,us} = R

. Let

. Determine which of the following are linear combinations of vectors

1 2
u=|-1 and v=|[4].
3 0
(a) w=[-1,-11,9]"
(b) w=[3,7,—2]"

. Express each polynomial as linear combinations of
pr=2+x+42% py=1—x+32% and ps=3+ 2+ 5>
(a) 6
(b) 2 + 622
(c) 5+ 9z + Hz?

. Determine whether the given vectors span R3.
(a) vi =13,3,3]", vo = [-2,-2,0]", v3 = [1,0,0]

() vi=[1,-1,3]T, vo = [4,0,2]7, v5 = [6,~1,6]"
(C) Vi = [37 174]Ta V2 = [27 _375]Ta V3 = [57 _279]T7 Vy = [1747 _1]T
(d) vi = [1,3,3]7, v = [1,3,4]7, vs = [1,4,3]7, va = [6,2, 1]

. Determine whether the polynomials

p1 =1+ 2z — 22 py = 3+ a2
p3 =5+ 4z — 2? ps = —2+ 2x — 22°

span the vector space Py(R) = {a + bx + cz? : a,b,c € R}.
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3.5 — LINEAR INDEPENDENCE AND BASES

Definition 3.32. Let V' be a vector space and A = {vy,...,v,} C V be nonempty. If the
equation
cvy+---+c, v, = 0 (38)

admits only the trivial solution ¢ = --- = ¢, = 0, then we call A a linearly independent set
and vy, ...,v, are linearly independent vectors. Otherwise we call A a linearly dependent
set and vy,...,v, are linearly dependent vectors.

An arbitrary set S C V' is linearly independent if every finite subset of S is linearly
independent. Otherwise S is linearly dependent.

It is straightforward to show that the definition for linear independence of an arbitrary set S
is equivalent to the definition for linear independence of A = {vy,...,v,} # @ in the case when
S is a nonempty finite set. Thus, the second paragraph of Definition is the more general
definition of linear independence.

A careful reading of Definition should make clear that vectors vq,...,v,, € V are
linearly dependent if and only if there exist scalars ci,...,c, not all zero such that is
satisfied. Also, an arbitrary set S is linearly dependent if and only if there exists some finite set
{v1,..., vy} C S for which has a nontrivial solution.

Theorem 3.33. Let A be a row-echelon matriz. Then the nonzero row vectors of A are linearly
independent, and the column vectors of A that contain a pivot are linearly independent.

Proof. We shall prove the second statement concerning the column vectors using induction,
and leave the proof of the first statement (which is quite similar) as a problem.

Let m € N be arbitrary. It is clear that if A € F™ is a row-echelon matrix with a pivot, then
its single column vector constitutes a linearly independent set. Let n € N be arbitrary, and
suppose that the pivot columns of any row-echelon matrix A € F™*™ are linearly independent.
Let A € ™D be a row-echelon matrix. Then the matrix B € F™*" that results from

deleting column n + 1 from A is also a row-echelon matrix, and so its pivot columns py, ..., p:,
are linearly independent by inductive hypothesis. Now, if column n + 1 of A is not a pivot
column, then the pivot columns of A are precisely py,...,p,, and we conclude that the pivot

columns of A are linearly independent.
Suppose rather that column n + 1 of A is a pivot column. Then the pivot columns of A

are precisely py,...,p, and q, where q = [q; - -+ ¢n]" denotes column n + 1 of A. For each
1<5<rlet
Py
pPj=| :
Dmj

Since q is a pivot column, there exists some 1 < ¢ < m such that ¢, is a pivot of A, and then
by the definition of a pivot we have p,; = 0 for all 1 < j <r. Suppose ci,...,c.,a € F are such
that

api+ -+ ¢pr+aq=0. (3.9)
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This yields
ciper + -+ Cper + agqe = 0,

which reduces to agq, = 0, and since ¢, # 0 on account of being a pivot, we finally obtain a = 0.
Hence

Clp1+"'+crpr:0a

and since py, ..., p, are linearly independent, it follows that ¢; = 0 for 1 < j <. This shows
that only admits the trivial solution, and therefore {p1, ..., p;,q} is a linearly independent
set. That is, the pivot columns of A € F™*(*+1 are linearly independent, and we conclude by
induction that the pivot columns of any row-echelon matrix are linearly independent. ]

Recall the vector space F(S,F) of functions S — F introduced in Example 3.7, A linear
combination of fi, fo,..., f, € F(S,F) is an expression of the form

afiteafot -+ enfn

for some choice of constants ¢y, ¢, ..., ¢, € F, which of course is itself a function in F(S,F)
given by
(cifi+eafot -+ enfu)(@) = e fi(@) + cafo(x) + -+ + cnful@)

for all z € S. To write
afitcafot ot eafu=0 (3.10)
means
(eifi teafot - +enfu)(x) =0

for all x € S; that is, ¢; f1 + cafo + - - - + ¢, fn s the zero function 0 : S — {0}.
We say fi, fa, ..., fn € F(S,F) are linearly independent on S if (3.10|) implies that

cp=c=-+=¢,=0.

Functions that are not linearly independent on S are said to be linearly dependent on S.
Thus, f1, fa,..., f. are linearly dependent on S if there can be found constants ¢y, ¢, ..., ¢, € F,
not all zero, such that (c1f1 +cafa+ -+ cnfn)(x) =0 for all (and it must be all) x € S.

Example 3.34. Consider the functions f, g : R — R given by
f(t)=e™ and g(t) ="

for a,b # 0 such that a # b. To show that f and g (as vectors in the vector space R®) are
linearly independent on R, we start by supposing that c;,co € R are such that

af +cg=0.
That is, the constants ¢; and ¢y are such that
cre + ey = i f(t) 4 cag(t) = (cof + c29)(t) =0
for all t € R. Thus, by choosing t = 0 and ¢ = 1, we have in particular

c14+co=0 and c1e®+ coe’ =0.
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From the first equation we have
Co = —C(q, (311)

which, when put into the second equation, yields

cre® — e’ =0,
and thus

cr(e” —e’) = 0. (3.12)
From a # b we have

e = exp(a) # exp(b) = €’

since the exponential function is one-to-one as established in §7.2 of the Calculus Notes, so
e® — e¥ # 0 and from equations ([3.12)) and (3.11)) we conclude that ¢; = c; = 0. Therefore the

functions f and g, which is to say e® and e”, are linearly independent on R for any distinct
nonzero real numbers a and b. |

Example 3.35. Show that the functions 1, x, and z? are linearly independent on any open
interval I C (0, 00).

Solution. Let I be an interval in (0, 00), so that I = (a,b) for some 0 < a < b < co. From
analysis we know there can be found some p > 1 such that a < pa < 2pa < 3pa < b. To show
that the functions 1, x, and z? (as vectors in the space R’) are linearly independent on I, we
suppose that cq,co, c3 € R are such that

1+ cor + ez’ = 0. (3.13)
for all x € I. Substituting pa, 2pa, and 3pa for x in (3.13]) yields the system

ci+ (pa)ez + (pa)’cs =0
c1 + (2pa)cs + (2pa)?es =0
c1 + (3pa)es + (3pa)?es =0

We can employ Gaussian Elimination to help solve this system for ¢y, ¢y, and cs:

(1 pa (pa)?|0] —ritmer [1 pa (pa)?]|0

1 2pa 4(pa)? | 0| 2255 10 pa 3(pa)? | 0] —2E2TE,
1 3pa 9(pa)?|0 0 2pa 8(pa)*|0

L pa  (pa)* | 0] raiveon 1 pa (pa)*|0

0 pa 3(pa)?|0| 22280 10 1 3pa |0

0 0 2(pa)?|0 0 0 10

Thus we now have the system

c1 + (pa)es + (pa)?cs =0
co + (3pa)es =0
C3 = 0

from which it easily follows that ¢; = ¢ = ¢35 = 0. This shows that the set {1, z, 332} is a linearly
independent set of functions in R’ for any open interval I C (0, co). |
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Remark. The basic approach exhibited in Example [3.35 can, with minor modifications, be
used to show that

{1,2,2°,...,2"}

is linearly independent in R’ for any interval I C R and integer n > 0.

Example 3.36. Consider the functions
T+ cos2r, x> costx, x> sin’x
with domain R. Suppose ¢y, ¢co, c3 € R are such that
€108 2T + ¢y cos® T + czsin® x = 0 (3.14)

for all z € R. The functions cos 2z, cos? x, and sin® x are linearly independent on R if and only
if the only way to satisfy (3.14)) for all x € R is to have ¢; = ¢ = ¢3 = 0. However, it is true
that

2 2

cos2x = cos“x — sin“ x

on R, and hence (3.14) is equivalent to the equation
2 .9 2 Lo
c1(cos” x — sin” ) + ¢ cos” x + cgsin“ x = 0.

Now notice that this equation, and subsequently (3.14]), is satisfied for all x € R if we let ¢; = 1,
ca = —1, and ¢3 = 1. So (3.14) has a nontrivial solution on R, and therefore the functions
cos 2z, cos® z, and sin® z are linearly dependent on R. |

Proposition 3.37. Let V' be a vector space.

1. The set {0} CV is linearly dependent.
2. The empty set & s linearly independent.

Proof.
Proof of Part (1). The equation c0 = 0 is satisfied by letting ¢ = 1. Since this is a nontrivial
solution, it follows that {0} is linearly dependent.

Proof of Part (2). From Definition an arbitrary set S is linearly independent if and only if

the following statement (P) is true: “If vq,...,v,, € S, then vy,...,v, are linearly independent.”
However if S = &, then the statement “vy,...,v, € S” is necessarily false, and therefore (P) is
vacuously true. We conclude that & is linearly independent. ]

Proposition 3.38. Let V' be a vector space. If vq,...,v, €V are linearly independent and
Vi + -+ TV =1 VL s+ YnVi

for scalars x1,...,x, and y1,...,Yn, then x; = y; for all 1 <i <n.
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Proof. Suppose that vy,...,v, € V are linearly independent and

n n
E T;Vi = E Yiv;
i=1 i=1

for scalars x; and ;. Then

> (@i —yi)vi =0,

i=1
and since the vectors v; are linearly independent, it follows that x; —y; = 0 for 1 < i < n. That
is, r; = y; for 1 < i <n. [ |

Proposition 3.39. Suppose V' is a vector space, and S = {vy,...,v,} is a linearly independent
set in V. Givenw € V, the set SU{w} is linearly dependent if and only if w € Span(S).

Proof. Suppose that S U {w} is linearly dependent. Then the equation
i+ -+ x,vp + 2, W =0

has a nontrivial solution, which is to say at least one of the coefficients x4, ..., x,.1 is nonzero.
If 2,1 =0, then x; # 0 for some 1 < k < n, in which case

.T1V1+"'+.TnVn:0

has a nontrivial solution and we conclude that vy, ..., v, are linearly dependent—a contradiction.
Hence z,.1 # 0, and we may write

T

W = —
k=1

Vi,
wn—i—l

which shows that w € Span(S).
Conversely, suppose that w € Span(S), so that

W =1V + -+ apVy
for some aq,...,a, € F. If we choose z;, = —ay, for each 1 < k <n, and let x,,.1 = 1, then
T1V1 + -+ TpVy + T 1 W = —A1Vy — -+ — AV + W
=—(avi+ -+ a,vy) + (v + -+ a,vy)
= 0’

and hence
v+ -+ x,vy, + 2w = 0.

has a nontrivial solution. Therefore S’ U {w} is a linearly dependent set. |
Definition 3.40. A basis for a vector space V' is a linearly independent set B C V such that

Span(B) = V. In the case of the trivial vector space {0} we take the basis to be &, the empty
set.
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A basis B is frequently indexed; that is, there exists an index set [ of positive integers
together with a function I — B that pairs each element of B with a unique k € I. Typically I
is either {1,...,n} for some n € N, or else I = N. In this fashion the vectors in B are ordered
according to the integers to which they are paired, with a symbol such as v; being used to
denote the vector that is paired with the integer k € I. If B is an indexed set containing n
vectors that we wish to list explicitly, then the list is most properly presented as an n-tuple,

B=(vi,...,vpn),

rather than as a set B = {vy,...,v,}. We will adhere to this practice in all situations in which
the order of the vectors in B is important.

Theorem 3.41. If {vy,...,v,} is a basis for V', then for any v € V there exist unique scalars
X1y, Xy for which v =x1vy+ -+ x,V,.

Proof. Suppose that {vy,...,v,} is a basis for V, and let v € V. Since vy,...,v, span V|
there exist scalars xq, ..., x, such that

V=x1Vy+- -+ 2,V

Now, suppose
V:ylvl+"'+ynvn
for scalars y1, ..., y,, so that

Vi + -+ TV, = 1V 0+ Yn Vi

Then since vy,...,v, are linearly independent we must have y; = x; for all 1 <1 < n
by Proposition [3.38, Therefore the scalars zq,...,z, for which v = xv; + -+ + z,v, are
unique. |

The following proposition pertaining to R? will be verified using only the most basic algebra.
A more general result applying to R™ for all n > 2 must wait until later, when more sophisticated
machinery will have been built to allow for a far more elegant proof.

Proposition 3.42. Let [a,b]",[c,d]" € R2.
1. [a,b]" and [c,d]" are linearly dependent if and only if ad — be = 0.
2. If [a,b]" and [c,d]" are linearly independent, then they form a basis for R2.

Proof.
Proof of Part (1). Suppose that [a,b]" and [c,d]" are linearly dependent. Then there exist
scalars r and s, not both zero, such that

{-f3-6]

This vector equation gives rise to the system

ar +cs =0, ()
br +ds=0, (e)
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If r # 0, then d(e;) — ¢(ez) (i.e. d times equation (e;) minus ¢ times equation (e3)) yields
adr — ber =0, or (ad — be)r = 0. Since r # 0, we conclude that ad — bec = 0.

If s # 0, then —b(e1) + a(ez) yields —bes + ads = 0, or (ad — be)s = 0. Since s # 0, we
conclude that ad — bc = 0 once more.

Now, we have that either » # 0 or s # 0, both of which lead to the conclusion that ad —bc = 0
and so the forward implication of part (1) is proven.

Suppose next that ad — bc = 0. We must find scalars x and y, not both 0, such that

o)

This vector equation gives rise to the system

ar + cy =0, (e3)
br + dy = 0, (64)

Assume first that a # 0. Then from (e3) we have x = —cy/a, and from —b(e3) + a(e4) we obtain
—bcy + ady = 0 and then (ad — be)y = 0. Since ad — be = 0, we may satisfy (ad — bc)y = 0 by
letting y = a, and then x = —cy/a = —c. It’s easy to check that x = —c and y = a # 0 will
satisfy (3.17)), and thus [a,b]" and [c,d]" are linearly dependent.

Now assume that a = 0. Then ad — bc = 0 implies that bc = 0, and so either b =0 or ¢ = 0.
But b = 0 leads us to [a,b]" = [0,0]", in which case [a,b]" and [¢,d]" are linearly dependent.
Suppose that ¢ = 0 and b # 0. Then equation (e3) in the system above vanishes, and only (e4)
remains to give x = —dy/b. If we let y = b, then x = —dy/b = —d. It’s easy to check that
x = —d and y = b # 0, together with our assumptions that a = 0 and ¢ = 0, will satisfy .

Since either a = 0 or a # 0 must be the case, and both lead to the conclusion that x and
y may be chosen such that both aren’t zero and is satisfied, it follows that [a,b]" and
[c,d]” must be linearly dependent. The reverse implication of part (1) is proven.

Proof of Part (2). Suppose that [a,b]" and [c,d]" are linearly independent. To show that the
vectors form a basis for R?, we need only verify that

(] i)

Let [z, 25]" € R% Scalars s; and s, must be found so that
x a c

{a51 + Sy = 21, Eeg,%

This gives rise to the system

bsy + dsy = x9, (€

in which s; and sy are the unknowns. From —b(e5) + a(eg) comes (ad — bc)se = axy — by, and
since by part (1) the linear independence of [a,b] and [c,d]" implies that ad — bc # 0, we obtain

ars — bxy

ad — be

SS9 =



88

Putting this into (e5) and solving for s; yields

1 azry — by
$1=— |1y — ————c¢
e\t ad — be
if we assume that a # 0, which shows that there exist scalars s; and sy that satisfy (3.16]).

If a = 0, then ad — bc # 0 becomes be # 0 and thus b, ¢ # 0. Since (€5) is now just css = 14
and ¢ # 0, we obtain so = x;/c. Putting this into (eg) gives

d 1 d
bSl""ﬂ:xQ = 81:—($2—ﬂ>,
c b c

since b # 0. Once again there exist scalars satisfying (3.16]).
Therefore [a,b]" and [c,d]" span R?, and we conclude that the set {[a,b]",[c,d]"} forms a
basis for R?. This proves part (2). |

The two parts of Proposition [3.42] when combined, provide an easy test to determine whether
two given vectors in R? are linearly independent.

Example 3.43. Show that [1,—3]" and [5,6]" form a basis for R2.

Solution. Here we have [a,b]" = [1,—3]" and [c,d]" = [5,6]", and since
ad — be = (1)(6) — (=3)(5) =21 #0

we conclude by part (1) of Proposition m that the vectors are linearly independent. Then, by

part (2), it follows that the vectors do indeed form a basis for R?. [
PROBLEMS
1. Let
2 3 -2
u; = 0 ) Uy = 1 s Uz = 3
—1 0 2

(a) Show that {u;,uy, uz} is a linearly independent set.
(b) The ordered set B = (uy, uy, u3) is a basis for R?. Given

—6
v=|-10
-5

find [v]g, the coordinates of v with respect to the basis B.

Y

2. Write down a basis for the yz-plane in R3.

3. The plane P given by x + 2y — 3z = 0 is a subspace of R3. Find a basis for it.
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3.6 — DIMENSION

The first proposition we consider is useful mainly for proving more momentous results in
this section.

Proposition 3.44. Let V be a vector space such that V = Span{vy,..., vy, }. Ifuy,...,u, €V
for some n > m, then the vectors uy,...,u, are linearly dependent.

Proof. Let uy,...,u, € V for some n > m. Since the vectors vi,...,v,, span V, there exist
scalars a;; such that

m

llj = Z CLZ']‘VZ‘ = aljvl + a2jv2 —+ 4 amij (317)
i=1

for each 1 < j < n.
Now, by Theorem the homogeneous system of equations

111 + @129 + -+ -+ a1y, =0
911 + A92X9 + -+ -+ A9,Ty, =0
U121 + Qa2 + -+ G Ty =0

has a nontrivial solution since n (the number of variables) is greater than m (the number of
equations). That is, there exists a solution (x1,...,2,) = (¢1,...,¢,) such that not all the
scalars c¢; are equal to 0.

We now have

n
E a;iC; = i1+ -+ Ay =0
i=1

for each 1 < i < m, which implies that

Z Z Q;;CjV; = Zaljcjvl + 4 Z AmjiCijVy = OV1 + -+ OVm =0. (318)
=1 j=1 j=1 j=1
But, recalling (3.17)), we may also write
Z Z A;;C; Vi = Z Z a;;C;Vy = Z <Cj Z aijvi> = Z c;uy. (319)
=1 j=1 j=1 i=1 j=1 =1 j=1

Combining (3.18) and (3.19)), we find that

n
chuj =cu; +---+cu, = 0
j=1
for ¢y, ..., c, not all equal to 0.
Therefore uy, ..., u, are linearly dependent. |
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Theorem [3.57] at the end of this section states that every vector space V' has a basis, but
it leaves open two mutually-exclusive possibilities: either V' has a finite basis (i.e. a basis
containing a finite number of vectors), or it does not. If V' has a finite basis, then it is called a
finite-dimensional vector space; otherwise it is an infinite-dimensional vector space. Note
that the trivial vector space {0}, which has basis @ by definition, is finite-dimensional.

Remark. If a vector space V is finite-dimensional, so that it has a finite basis B = {v1,..., v, },
then it is an immediate consequence of Proposition and the fact that V' = Span{vy,...,v,,}
that V' cannot possess any basis that is infinite. Indeed no set of more than m vectors can even
be linearly independent!

While it is usually the case that many different sets of vectors can serve as a basis for a
finite-dimensional vector space V' (the trivial vector space being the sole exception), it turns
out that every basis for a finite-dimensional vector space must contain the same number of
vectors. In what follows we let |\S| denote the number of elements of a set S, also known as the
cardinality of S.

Theorem 3.45. If By and By are two bases for a finite-dimensional vector space V', then

|Bi| = |Bal.

Proof. The remark made above makes clear that B; and B, must both be finite sets, so
By = {vy,...,vp} and By = {uy,...,u,} for integers m and n, and we have |B;| = m and
’BQ| =n.

Since Span(B;) =V, if n > m then uy, ..., u, must be linearly dependent by Proposition
3.44] which contradicts the hypothesis that B; is a basis for V. Hence n < m.

Since Span(By) =V, if n < m then vy, ..., v, must be linearly dependent by Proposition
[3.44] which contradicts the hypothesis that By is a basis for V. Hence n > m.
Therefore m = n, which is to say |B;| = |Ba|. |

Throughout these notes, if a vector space is not said to be finite-dimensional, then it can
be assumed to be either finite- or infinite-dimensional. It is the fact that the cardinality of all
the bases of a given finite-dimensional vector space is a constant that allows us to make the
following definition.

Definition 3.46. The dimension of a finite-dimensional vector space V, dim(V), is the
number of elements in any basis for V.. That is, if B is a basis for V', then dim(V') = |B|.

Remark. Since the basis for the trivial vector space {0} is @ by Definition [3.40} it follows
that the dimension of {0} is |@| = 0. If a vector space V is infinite-dimensional then we might
be tempted to write dim(V') = oo, but there is little use in doing this since there are in fact
different “sizes” of infinity. We will not make a study of such matters in these notes, for it is
more properly the domain of a book on the subject of functional analysis.

Example 3.47. A basis for the vector space R? is & = {ey, e;}, where

o] it o]
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Since there are two elements in the set we conclude that dim(R?) = 2.
More generally, as we have seen, a basis for R” is provided by the set

En=1e1,...,e,}

of standard unit vectors. Since |E,| = n, we see that dim(R") = n.

Example 3.48. The vector space R™*" of m x n matrices with real-valued entries has as a
basis the set

gmn:{EmlSZSmalS]Sn}y
where E;; is the m x n matrix with ij-entry 1 and all other entries 0. There are mn elements in

Emn, and thus dim(R™*"™) = mn.

Example 3.49. Example showed that Skw,(R) is a subspace of R"*" and thus is a vector
space over R in its own right. The goal now is to find the dimension of Skw,,(R). The first thing
to notice is that the diagonal entries of any skew-symmetric matrix A = [a;;] must all be zero:

AT:—A = Qi = —Q;; = a”:O

So, in the case when n = 2, we must have

for some a € R, which is to say

@ ={[ 0 olcaerb={o] 9 (lacrb=sm([_) 3]).

Thus we see that the set
0 1
B :{ [_1 O} } = {Es12 — Eg01}

spans Skws(R), where the definitions of the matrices Ey 12 and Eg 9 are given by Equation
(2.14]). Since By is a linearly independent set it follows that B, is a basis for Skwy(R), and
therefore dim(Skws(R)) = |Bs| = 1.

When n = 3 we find that

0 a b
Skw3z(R) =< |—a 0 c|:a,b,ceR
—b —c 0
010 001 0 00
=<al—-1 0 O0|+b| O 0 O|4+c|O 0 1]|:a,bceR
000 -1 00 0 -1 0

010
=Span| |—1 0 0],
000

= Span ({E3 12 — E321, E313 — E331, E323 — B3 32}



92

The set
Bs = {E3 15 — Es21, Ez 13 — Ez31, Ez23 — E3,32}

is linearly independent, and so dim(Skws(R)) = 3.

More generally, for arbitrary n € N, we find A = [a;j],, is such that a; = 0 for 1 <1i < n, and
a;j = —aj; whenever ¢ # j. Thus the entries of A are fully determined by just the entries above
the main diagonal, since each entry below the diagonal must be the negative of the corresponding
entry above the diagonal. The entries above the diagonal are a,;; for 1 < ¢ < j < n, and it is
straightforward to check that

B, ={E,;; —E,;;:1<i<j<n}
is a linearly independent set such that

SkWn(R) = Span ({En,ij — En,ji 1< < j < n}),

and so
— n(n —1)
dim(Skw,(R)) = [Bu| = (n = 1)+ (n—2) +---+1=) k= ——
k=1
This is just the number of entries in an n X n matrix that are above the main diagonal. ]

Definition 3.50. Let V be a vector space and A C V' a nonempty set. We call B C A a
mazximal subset of linearly independent vectors if the following are true:

1. B 1s a linearly independent set.
2. For all S C A with |S| > |B|, S is a linearly dependent set.

Thus if B C A is a maximal subset of linearly independent vectors and | B| = r, then there
exist r linearly independent vectors in A, but there cannot be found r + 1 linearly independent
vectors in A. It may be that only one combination of r vectors in A can be used to construct
the set B, or there may be many different possible combinations.

Theorem 3.51. Let V' be a vector space, and let A = {vy,...,v,} CV be such that V =
Span(A). Then

1. The dimension of V' is at most n: dim(V') < n.
2. If B C A is a mazimal subset of linearly independent vectors, then B is a basis for V.

Proof.
Proof of Part (1). By Proposition any set containing more than n vectors in V' must be
linearly dependent, so if B is a basis for V', then we must have dim(V') = |B| < n.

Proof of Part (2). Suppose that B C A is a maximal subset of linearly independent vectors.
Reindexing the elements of A if necessary, we may assume that B = {vq,...,v,.}. If r =n,
then B = A, and so B spans V' and we straightaway conclude that B is a basis for V' and we're
done. Suppose, then, that 1 <r <n. Foreach 1 <i<n —rlet

Bi =BU {vr+i} = {Vl, . 7V7-7Vr+7:}.
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The set B; is linearly dependent since |B;| > |B|, and so there exist scalars a;1, .. ., a;., b;, not
all zero, such that
a;1Vvy + -+ @;p vy + bivr—i-i = 0. (320)

We must have b; # 0, since otherwise (3.20)) becomes
anvy+ -+ a v, = 07

whereupon the linear independence of vq,...,v, would imply that a;; = --- = a;; = 0 and
so contradict the established fact that not all the scalars a;1,...,a;.,b; are zero! From the

knowledge that b; # 0 we may write (3.20) as

Q41 (0772 a’lj
VT+Z f— _b_zvl —_ . e e — b—iVT = Z d’L]Vj7 (321)
7j=1
where we define d;; = —aij/bi foreach 1 <7<n-—7randl g j < r. Hence the vectors
V,41,...,V, are each expressible as a linear combination of vq,...,v,.
Let u € V be arbitrary. Since vy,...,v, span V there exist scalars ¢y, ..., ¢, such that

U= CiVy+ -+ CpVp,
and then from (3.21]) we have

n—r s n—r T
u=cvy+- -+ + E CrtiVigi = E cjvj + E (CTH E dijvj>

=1

= Z Cjvi + Z Z CriidijVj = Z ¢V + Z Z CryidijVj

=1 j=1 Jj=1 =1

= Z (CjVj + Z Cr+idijVj) = Z (Cj + Z Cr+idij>vj-
j=1 i=1 j=1 i=1
Setting

n—r
C] = Cj -+ E Cr+idij
i=1

for each 1 < j < r, we finally obtain
u:élvl—i—---—l—érvr

and so conclude that u € Span{vy,...,v,} = Span(B).
Therefore V' = Span(B), and so B is a basis for V. |

Closely related to the concept of a maximal subset of linearly independent vectors is the
following.

Definition 3.52. Let V' be a vector space. A set B C V is a maximal set of linearly
independent vectors in V if the following are true:

1. B is a linearly independent set.
2. For allw € V such that w ¢ B, the set BU{w} is linearly dependent.
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Theorem 3.53. If V is a vector space and S a mazximal set of linearly independent vectors in
V', then S is a basis for V.

Proof. Suppose that V is a vector space and S = {vy,...,v,} is a maximal set of linearly
independent vectors. Let u € V. Then the set {vy,...,v,,u} is linearly dependent, and so
there exist scalars ¢, ..., ¢, not all zero such that
cou+ vy + -+ cpv, = 0. (3.22)

Now, if ¢y were 0 we would obtain ¢;vy + - - - + ¢, v,, = 0, whereupon the linear independence of
S would imply that ¢; = --- = ¢, = 0 and so contradict the established fact that not all the
scalars ¢, . .., ¢, are zero. Hence we must have ¢y # 0, and gives

&1 Cn

U= ——vy— - — —V,.
Co Co

That is, every vector in V is expressible as a linear combination of vectors in S, so that
Span(S) = V and we conclude that S is a basis for V. |

Theorem 3.54. Let V' be a finite-dimensional vector space, and let S CV with |S| = dim(V).

1. If S is a linearly independent set, then S is a basis for V.
2. If Span(S) =V, then S is a basis for V.

Proof.

Proof of Part (1). Setting n = dim(V'), suppose S = {vy,...,v,} C V is a linearly independent
set. Any basis for V' will span V' and have n vectors, so by Proposition the set S U {w}
must be linearly dependent for every w € V' such that w ¢ S. Hence S is a maximal set of
linearly independent vectors, and therefore S is a basis for V' by Theorem [3.53|

Proof of Part (2). Again set n = dim(V'), and suppose S = {vy,...,v,} is such that Span(S) =
V. Assume S is not a basis for V. Then S must not be a linearly independent set. Let B C S
be a maximal subset of linearly independent vectors. Then B cannot contain all of the vectors

in S, so |B| < |S| = n. By Theorem [3.51|(2) it follows that B is a basis for V, and so
dim(V) = |B| < n.

Since this is a contradiction, we conclude that S must be a linearly independent set and therefore
S is a basis for V. [ |

Theorem 3.55. Let V' be a vector space with dim(V) =n > 0. If vq,...,v, € V are linearly
independent vectors for some r < n, then vectors v,i1,...,v, € V may be found such that
{V1,...,Vp} is a basis for V.

Proof. Suppose that vi,...,v, € V are linearly independent vectors, where » < n. The set
S, ={v1,...,v,} cannot be a basis for V since by Definition any basis for V' must contain
n vectors. Hence S, cannot be a maximal set of linearly independent vectors by Theorem
and so there must exist some vector v,,; € V such that the set

Sr+1 = ST U {VT+1} = {Vl, ce 7V7"+1}
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is linearly independent. Now, if » + 1 = n, then Theorem implies that S, is a basis for
V' and the proof is done. If r + 1 < n, then we repeat the arguments made above to obtain
successive sets of linearly independent vectors

S’/‘-‘r’b - ST+’£—1 U {Vr+1} = {Vl, e 7V’I”+’i}
until such time that r 4+ ¢ = n, at which point the linearly independent set

Sp=Sn1U{vp} =A{vi,.. ., v, Ver, .o, Vi )
will be a basis for V. [ |

Theorem 3.56. Let V' be a finite-dimensional vector space, and let W be a subspace of V.
Then

1. W s finite-dimensional.
2. dim(WW) < dim(V).
3. If dim(W) = dim(V), then W =V,

Proof. If W = {0}, then all three conclusions of the theorem follow trivially. Thus, we will
henceforth assume W # {0}, so that dim(V) =n > 1.

Proof of Part (1). Suppose W is infinite-dimensional. Let w; be a nonzero vector in W. The set
{w1} cannot be a maximal set of linearly independent vectors in W since otherwise Theorem
would imply that {w;} is a basis for W and hence dim(W) = 1, a contradiction. Thus for
some k > 2 additional vectors wo, ..., w; € W may be found such that Sy = {wy,..., Wi} is a
linearly independent set of vectors in W. However, for no £ € N can S, be a maximal set of
linearly independent vectors in W, since otherwise Theorem would imply that dim(W) = k.
It follows that there exists, in particular, a linearly independent set

{wi,..., w1} CW CV,

which is impossible since by Proposition there can be no linearly independent set in V'
containing more than n vectors. Therefore W must be finite-dimensional.

Proof of Part (2). By Part (1) it is known that W is finite-dimensional, so there exists a basis
B = {wi,...,wp} for W, where m € N. Since B is a linearly independent set in V', and by
Proposition there can be no linearly independent set in V' containing more than dim(V') = n
vectors, it follows that dim(W) =m < n = dim(V).

Proof of Part (3). Suppose that dim(W) = dim(V') = n, where n is some integer since V is
given to be finite-dimensional. Let B = {wy,...,w,} be a basis for W, so that W = Span(B).

Since dim(V') = n and wy,...,w, € V are linearly independent, B is a basis for V' by Theorem
3-54 Thus V = Span(B), and we have V = W. |

Given a matrix A € F™*" recall from §3.1 that the set of all x € F” for which Ax =0
is true is a subspace of F" called the null space of A, denoted by Nul(A). Later on we will
frequently be concerned with determining the dimension of Nul(A), which we will often refer to
as the nullity of A. That is,

nullity (A) = dim(Nul(A)).
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Theorem 3.57. Fvery vector space has a basis.

Proof. Let V' be a vector space over a field F. By definition @ is the basis for {0}, so assume
that V' is nontrivial. Let & be the collection of all linearly independent subsets of V:

S ={ACV:Ais alinearly independent set}.

(Note that S contains at least one singleton {v} with v # 0 since V' is nontrivial.) Then S is
a nonempty partially ordered set under the inclusion relation C. Let C C S be a chain in S.
We have C = {C; : i € I} for some index set I, and for every A, B € C either A C B or B C A.
Claim:

U= Ci

iel
is an upper bound for the chain C such that U € §. 1t is clear that C; C U for all i € I. Suppose
that U ¢ S, which is to say U is not a linearly independent set in V. This implies that, for

some n € N, there exist uy,...,u, € U such that {uy,...,u,} is linearly dependent, which in
turn implies that for each 1 < k < n there is some ¢, € [ with u, € C;,. For convenience we
may assume the vectors uy, ..., u, are indexed such that

Czlgclzggcz»,”

recalling that each C;, is an element of the totally ordered set C. Thus uy,...,u, € C;,, which
shows that C;, is not a linearly independent set and hence C;, ¢ S—a contradiction. We
conclude that U must be a linearly independent set, and hence U is an upper bound for C with
U € S. Since every chain in S has an upper bound in §, Zorn’s Lemma implies that S has a
maximal element M.

Let v € V be arbitrary. Suppose, for all n € N (or 1 < n < |M| if M is finite) and
Vi,...,V, € M, the only rq,...,7r,,r € F that satisfy the equation

Z Ve +1rv =20 (3.23)
k=1
are ry = -+- =1, =1 = 0. Then M U {v} is a linearly independent set, which implies

that M U{v} € S. Since M C M U{v} and M is a maximal element of S, we must have
M = M U{v} and therefore v € M. In particular we see that v € Span(M).

Suppose, in contrast, that for some n € N and vy,...,v, € M the equation admits a
nontrivial solution. Since vq,...,v, are linearly independent this means we must have r # 0
(otherwise we are forced to embrace the trivial solution). Since F is a field there exists some
r~! € F such that r~'r = 1. Hence

n

n n
_ o _ -1
rv = — g T = V=T1 E TEVE = E (r—"rg)vi,
k=1 k=1

k=1
and we see that v € Span(M) once more. Thus V' = Span(M), and since M is a linearly
independent set we conclude that M is a basis for V. |
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PROBLEMS

1. Find the dimension of P3(R), the vector space over R of polynomials in x of degree at most
3 with real coefficients.

2. Recall that Sym,,(R) denotes the vector space of n x n symmetric matrices over R.
(a) Find a basis for Sym,(R). What is the dimension of Sym,(R)?

(b) Find a basis for Sym4(R). What is the dimension of Sym,(R)?
(¢) Find a basis for Sym,(R). What is the dimension of Sym,(R)?
(d) Find a basis for Sym, (R). What is the dimension of Sym,, (R)?
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3.7 — PRODUCT SPACES

Definition 3.58. Let U and V' be vector spaces over F. The product of U and V is the set
UxV={(u,v):uelUveV}
More generally, let Vi, ..., V, be vector spaces over F. The product of V..., V, is the set

HVk:{(Vl,...,vn) :vg € Vi for each 1 < k < n}
k=1

We see that the product of two or more vector spaces amounts to nothing more than the
Cartesian product of the sets of objects contained within the vector spaces. Let

u,n e HVk

k=1

be the n-tuples
u=(u,...,u,) and v=(vy,...,V,),
and let ¢ € F. If we define the sum of u and v by
u+o=(u+vy,...,u, +vp,),
and the scalar product of ¢ with v by
co = (cvy,...,cvy),

then it is a routine matter to verify that [[;_, Vi becomes a vector space in its own right, called
the product space of V..., V.
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3.8 — THE RANK OF A MATRIX

Let A € F™*"  so that

11 di2 - Qip
Q21  A22 -+ Qa2p
A = . . ) . . (3.24)
m1 Am2 " Omp
Denote the column vectors of A by
alj
Cj =

Amyj

for 1 < 7 < n, and denote the row vectors of A by
ri=[an ... G
for 1 <i < m. The column space of A is defined to be the set
Col(A) = Span{cy,...,c,},
and the row space of A is defined to be the set
Row(A) = Span{r/,...,r}.

Proposition implies that Col(A) is a subspace of F™ and Row(A) is a subspace of F". The
column rank of A is the dimension of the column space of A:

col-rank(A) = dim[Col(A)].
The row rank of A is the dimension of the row space:

row-rank(A) = dim[Row(A)].

Proposition 3.59. Let A € F™" with cq,...,c, € F™ the column vectors of A and
ry,...,r, € F" the row vectors of A.

1. If S C{cy,...,c,} is a mazimal subset of linearly independent vectors, then
col-rank(A) = [5].
2. If S CA{ry,..., v} is a mazimal subset of linearly independent vectors, then

row-rank(A) = |S].

Proof.

Proof of Part (1). Suppose S C {cy,...,c,} is a maximal subset of linearly independent
vectors. Let col-rank(A) = k. Since Col(A) is a vector space, Col(A) = Span{cy,...,c,}, and
S C{cy,...,c,} is a maximal subset of linearly independent vectors, it follows by Theorem
that S is a basis for Col(A). Now, because the dimension of Col(A) is k, we must have
|S| = k = col-rank(A) as was to be shown.

Proof of Part (2). Done similarly, and so left as a problem. |
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In the proof of Proposition [3.59(1), since |S| = col-rank(A) = k, we can conclude that S
consists of k elements of the set {ci,...,c,}, and so we may write S = {c,,,...,c,, } for some
ni,...,np € {1,...,n}. That is, {c,,,...,c,, } is a maximal subset of linearly independent
vectors, which is to say the maximum number of linearly independent column vectors of A is
col-rank(A).

What we ultimately want to show is that the row and column ranks of a matrix are always
equal. It is not an obvious fact, and so a few more results will need to be developed before we
are in a position to prove it.

Lemma 3.60. Let V and W be vector spaces, with
Sy ={vy,...,vp,} CV  and Sw={wy,...,w,} CW.
If

Zn:l'kvk =0 & Zn:kak =0
k=1 k=1

forall xy,...,x, € F, then dim(Span Sy) = dim(Span Sy ).

Proof. Suppose that, for all zy,...,z, € F, >  x;v; = 0 if and only if )" | z;w; = 0. We
shall refer to this hypothesis as (H). Let

RV:{Vil,...,VZ'T} QSV

be a maximal subset of linearly independent vectors for Sy, which means any subset of Sy with
more than r elements must be linearly dependent. By Theorem Ry is a basis for Span(Sy),
and so dim(Span Sy) = |Ry| =r.

Let Ry = {wy,,...,w; .} C Swy. Suppose that

xilwil + -+ :Uz'rwir = 0
Then by (H) we have
xilvil 4+ 4 l‘iT,VZ‘T = O

as well, and since v;,,...,v; are linearly independent we conclude that z;, = --- = x;, = 0.
That is, >, _, ;, W;, = 0 necessarily implies that z;, =0 for all 1 <k <r, and so Ry is itself
a linearly independent set of vectors.

Next, assume B = {w;,,...,w;,} C Sy is such that |B| =¢ > r. Set

T, Vi + -+ 25V, = 0. (3.25)

Since any subset of Sy containing more than r elements must be linearly dependent, it follows

that v;,,...,v;, must be linearly dependent and there exist scalars z;,,...,x;,, not all equal to
zero, which satisfy (3.25)). By (H) these same scalars must satisfy

Ljy Wiy +ee TjWj, = 0,

which shows that w; , ..., w;, must also be linearly dependent. Hence there does not exist any
linearly independent set B C Sy for which |B| > r.

We conclude that Ry C Sy is a maximal subset of linearly independent vectors. By
Theorem [3.51] Ry is a basis for Span(Sy/), and so dim(Span Sy) = |Rw| = r.
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Therefore dim(Span Sy) = r = dim(Span Sy, ). |

Lemma 3.61. Suppose A € F™ ™ is invertible, and let B € F™*™. Then col-rank(AB) =
col-rank(B).

Proof. Let by,..., b, € F™ be the column vectors of B, so that
B — |:b1 e bnj|a

and thus by Proposition
AB =[Ab, --- Ab,],

where Abq,...,Ab, € F™. Let z1,...,2, € F. If Z?:l x;b; = 0, then by Theoremwe have

> zj(Abj) =) A(z;b) =A) x;b; = A0 =0;
j=1 j=1

j=1
and if 377 | x;(Ab;) = 0, then since A is invertible we have

> b= a;(A'Ab)) = A7) “;(Ab;) = A0 =0.
j=1 j=1 j=1

Therefore
col-rank(AB) = dim( Span{Ab;,..., Ab,})= dim(Span{b,...,b,}) = col-rank(B)

by Lemma [3.60 |

Proposition 3.62. Let A € F™*™.
1. If A’ row-equivalent to A, then

Row(A) = Row(A') and col-rank(A) = col-rank(A’).
2. If A’ column-equivalent to A, then
Col(A) = Col(A') and row-rank(A) = row-rank(A')

Thus both col-rank(A) and row-rank(A) are invariant under arbitrary finite sequences of ele-
mentary row and column operations applied to A.

Proof.
Proof of Part (1). Suppose that A’ is row-equivalent to A. This means there exists a finite
sequence of elementary matrices My, ..., M; € F™*™ such that

A’ =M, --MA.
By Proposition each matrix M; is invertible, and hence M = M, - -- M, is invertible by
Theorem .26l Therefore
col-rank(A) = col-rank(MA) = col-rank(A)

by Lemma [3.61]
To show that Row(A) = Row(A’), it is sufficient to show that Row(A) is invariant under
each one of the three elementary row operations. By Proposition [2.16(1) an R1 operation
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M, ;(c)A replaces the row vector a; of A by a; + ca;, and thus the row space of the resultant
(row-equivalent) matrix is equal to Row(A) by Proposition [3.31] By Proposition [2.16(2) an R2
operation M; ;A merely interchanges two row vectors of A, which clearly does not alter the row
space. Finally by Proposition [2.16(3) an R3 operation M;(c)A multiplies the row vector a; of A
by the nonzero scalar ¢, and the straightforward formal verification that the row space of the
resultant matrix equals Row(A) is left as a problem.

Proof of Part (2). Suppose A’ is column-equivalent to A, so there are elementary matrices
My, ..., M € F**" such that

A'=AM/ ---M],
and hence (taking the transpose of both sides and applying Proposition we have
(AT =M, ---M;AT.
Again M = My, - - - M, is invertible, so Lemma [3.61] implies that
col-rank(A ") = col-rank(MA ) = col-rank((A")").

Since the column spaces of AT and (A’)" are the row spaces of A and A’ respectively, we
finally obtain row-rank(A) = row-rank(A’).

The proof that Col(A) = Col(A’) is nearly identical to the proof that Row(A) = Row(A’)
in part (1), only Proposition is employed instead of Proposition m |

In brief, elementary row operations do not change the row space of a matrix, and elementary
column operations do not change the column space. On the other hand elementary row (resp.
column) operations may change the column (resp. row) space of a matrix, but the dimension of
the column (resp. row) space will remain the same. That is, any elementary row operation may
change the span of the column vectors, and any elementary column operation may change the
span of the row vectors.

Example 3.63. Find a basis for the column space of the matrix

01 1 -1 3
A=131 o 2 _¢
10 -4 2 1

Solution. One way to proceed is to use elementary column operations to put the matrix into
row-echelon form.

1 1
scatci—cy — —5C3+tc1—cl

2cq4+c3—c3 co$>C3

=W O N
O = = O
=~ O = W
DN DN = o~
|
_ O W
O DNONI-
O~ — O
O =
DO N
|
— o W
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-2 110 4 1 3110 4 1
0 _1 1 _]_ 3 —4c34ca—ca O _5 ]. _1 3 —2c5+cq4—rcy
0 41 2 —6 e 0 01 2 —6

0 00 2 1 0 00 2 1

3 11 0 2 1

0 -5 1-7 3| .,

0 0 1 14 —6 =4

0 00 0 1

The first, second, third, and fifth column vectors of the row-echelon matrix A’

3 11 0 1

0 -5 1 3
Ci = 0l Cy = K C3 = 1|’ Cs; = 6|’

0 0 0 1

contain pivots, and so are linearly independent by Theorem [3.33] Since dim(R*) = 4 and
C1,Cy, €3, c5 € R? are linearly independent, by Theorem [3.54|(1) the set

S = {Cla Co, C3, C5}

is a basis for R?, and so Span(S) = R*. By Proposition any subset of R* containing more
vectors than S (i.e. more than four vectors) must be linearly dependent, and therefore S must
be a maximal set of linearly independent vectors in Col(A’) since any vector in Col(A’) is
necessarily a vector in R*. By Theorem we conclude that S is a basis for Col(A’). Now,
because A’ is column-equivalent to A we have Col(A’) = Col(A) by Proposition [3.62] Therefore
S is a basis for Col(A) and we are done. |

The next theorem is momentous. It tells us that the column rank of a matrix A always equals
the row rank, so that we may simply refer to the rank of A, rank(A), without discriminating
between the column and row spaces. That is,

rank(A) = dim(Col(A)) = dim(Row(A)).
Also the theorem provides a definitive strategy for determining rank(A).

Theorem 3.64. If A € F"*" is such that row-rank(A) = r, then A is equivalent via elementary
row and column operations to the m X n matriz

I |O
Llo] -
Hence col-rank(A) = row-rank(A).

Proof. Suppose A € F™*" with row-rank(A) = r. By Proposition [2.20] A is row-equivalent to
a matrix A’ in row-echelon form. Since the nonzero row vectors of A’ are linearly independent
and row-rank(A’) = r by Proposition it follows that the top r rows of A’ must be nonzero
row vectors while the bottom m — r rows must consist solely of zero entries.

Now, the pivots p1,...,p, in the top r rows of A’ are nonzero entries having only zero
entries to the left of them. Each nonzero entry x to the right of p; we may “eliminate” by
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performing a C1 operation: namely, if p; is in column ¢ and x is in column 5 > ¢, then add
—x/py times column ¢ to column j. Since all entries below p; are zero, this affects no other
entries in the matrix beyond replacing the 1j-entry x with 0. In the end we obtain a matrix in
which p; is the only nonzero entry in its row and column, and we repeat the process for ps, ps,
and finally p,. The resultant matrix will have only py, ..., p. as nonzero entries, still in their
original row-echelon formation. Now we perform C2 operations to make p; the ii-entry for each
1 <i < r. Finally we perform C3 operations: we multiply column i by 1/p; so that the ii-entry
is 1 for each 1 < ¢ < r, thereby securing the desired matrix (3.26)).

The matrix clearly has row rank and column rank both equal to r, and since the matrix
was obtained from A by applying a finite sequence of elementary row and column operations,
Proposition implies that the row rank and column rank of A are likewise both equal to 7.
This finishes the proof. ]

Example 3.65. Apply a sequence of elementary row and column operations to

1121
A=(101 2
21 3 4

to obtain an equivalent matrix of the form (3.26]). Show that the row vectors of A are linearly
independent, and that row-rank(A) = col-rank(A). State the rank of A.

Solution. First we will get a matrix in row-echelon form using strictly elementary row operations:

11 2 1] i [1 1 21 1 1 21
1 0 1 2f 22l -1 —1 1] ==2molp -1 -1 1
2 1 3 4 0 -1 —1 2 0 0 0 1

Now elementary column operations will be used to first put zeros to the right of the 7i-entries,
and then to obtain a diagonal of 1’s:

(1 1 2 1] —ejtesses [1 0 0 1
0 —1 —1 1| =2z, 1g -1 —1 1 c3tred
0 0 0 1] 0 0 01

(1 0 0 0] epresees [1 0 0 0O 10 0
0 —1 1 —1| =224 g -1 0 0] =2 |0 1 0
0 01 0 0 010 00 0

The row vectors of the final matrix are [1,0,0,0], [0,1,0,0], and [0, 0, 1, 0], which are linearly
independent, and so the row rank is 3. By Proposition it follows that row-rank(A) = 3
as well, and therefore the row vectors of A must be linearly independent by Theorem [3.54(2).
The nonzero column vectors of the final matrix are [1,0,0]", [0,1,0]", and [0,0,1]", which are

linearly independent, and so col-rank(A) = 3 by Proposition [3.62, Thus we have
row-rank(A) = col-rank(A) = 3,
and therefore rank(A) = 3. [

1 0 00
Tateza, g o1 —1 1| 2o
0 0 01
0
0
1

In Example it should be noted that rank(A) could have been determined rather easily
early on, right after performing the R1 row operation —ry + r3 — r3. The row vectors at that
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stage were [1,1,2,1], [0, —1,—1,1], and [0, 0,0, 1], which can be seen to be linearly independent
on account of the placement of the zeros. Thus rank(A) = row-rank(A) = 3.

With our definition of rank in hand, the findings of Proposition and Theorem
combine to yield the following result.

Theorem 3.66. If A is row-equivalent or column-equivalent to A’, then rank(A) = rank(A’).

The next example makes use of a variety of results developed throughout this chapter. What
once may have required much tedious calculation now can be accomplished quickly and elegantly.

Example 3.67. Let

-1 1
vi=| 1 and vy = |2
1 1
Show that B = {vy, vy} is a basis for the vector space W C R? given by
x
W = yllx—2y+32=0
z
Solution. Define the matrix
-1 1
B = [Vl Vg} = 1 2 s
11
and consider the first two row vectors [a,b] = [—1,1] and [¢,d] = [1,2]. Since

ad — be = (~1)(2) - (1)(1) = =3 £ 0,

these row vectors of B are linearly independent by Proposition and so row-rank(B) > 2.
On the other hand B has only two columns, so col-rank(B) < 2. Hence, by Theorem [3.64]

2 < row-rank(B) = rank(B) = col-rank(B) < 2,

which implies that rank(B) = 2. Since v; and vy are the column vectors of B, it follows that v;
and v, are linearly independent.

It is easily verified that vy, vy € W, so that S = Span(B) is a subspace of W and thus
dim(S) < dim(W) by Theorem [3.56{2). Since B is a basis for S, we have dim(S) = 2; and since

1
0l ¢w,
0

so that W is a subspace of R? that does not equal R3, it follows by Theorem that
dim(W) < dim(R?) = 3.

That is,
2 = dim(5) < dim(W) < 2,

which shows that dim(TW) = 2, and therefore B is a basis for W by Theorem [3.54|(1). [
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PROBLEMS

1. For any matrix A show that Col(A) = Row(A ) and Row(A) = Col(AT).
2. Show that rank(A) = rank(A ") for any matrix A.

3. Let A € F™*" and B € F"*P.
(a) Show that rank(AB) < rank(A).

(b) Show that rank(AB) < rank(B).
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LINEAR MAPPINGS

4.1 — LINEAR MAPPINGS

A mapping (or transformation) is nothing more than a function, but usually a function
between sets that have some additional structure such as a vector space. We have encountered
mappings already in the definition of a vector space V: namely the scalar multiplication and
vector addition functions, whose ranges both consist of elements of V. As with functions in
general, to say a mapping 7" maps a set X into a set Y, written T : X — Y, means that T
maps each object z € X to a unique object y € Y. We denote this by writing T'(z) = y, or
sometimes Tx = y, and call X the domain of 7" and Y the codomain. A little more formally
a mapping 7" is a set of ordered pairs (x,y) € X x Y with the property that

Vo€ X[3y e Y(((z.y) €T)A G #y — (2.9) ¢ T))].

We call T'(x) the value of T" at x. Given any set A C X, we define the image of A under T
to be the set
T(A)={T(z):xz € A} CY,

with 7'(X) in particular being called the image of T (also known as the range of T') and
denoted by Img(7T).

A common practice is to write x — y to indicate a mapping. For instance x — /= may be
written to denote a mapping 7' : R — R for which T'(x) = /z for all z € R. The symbol — is
placed between sets, while — is placed between elements of sets.

Definition 4.1. A mapping T : X — Y is injective (or one-to-one) if
T(.’El) = T(l’g) = T = 9.
for all x1,29 € X. Thus if x1 # 9, then T(x1) # T(x2).
A mapping T : X — 'Y is surjective (or onto) if for each y € Y there exists some x € X

such that T'(x) =y. Thus we have T(X) =Y.
If a mapping is both injective and surjective, then it is called a bijection.

A large part of linear algebra is occupied with the study of a special kind of mapping known
as a linear mapping.
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Definition 4.2. Let V and W be vector spaces over F. A mapping L : V — W s called a
linear mapping if the following properties hold.

LT1. L(u+v) = L(u) + L(v) for allu,v eV
LT2. L(cu) =cL(u) forallc e F andu € V.

Whenever L : V — W is given to be a linear mapping, it is understood that V' and W must
be vector spaces. A linear operator is a linear mapping L : V — V, which may be more
specifically referred to as a linear operator on V whenever the occasion warrants.

Proposition 4.3. If L : V — W s a linear mapping, then
1. L(0)=0

2. L(—v)=—L(v) forany v e V.

3. Foranycy,...,c, €F, vi,...,v, €V,

L (Z Cka> = Z CkL(Vk).

Proof.
Proof of Part (1). Using the linearity property LT1, we have

L(0) = L(0+0) = L(0) + L(0).
Subtracting L(0) from the leftmost and rightmost sides then gives
L(0) — L(0) = [L(0) + L(0)] — L(0),
and thus 0 = L(0).
Proof of Part (2). Let v € V be arbitrary. Using property LT1 and part (1), we have
L(v)+ L(—v) = L(v+ (—v)) = L(0) = 0.
This shows that L(—v) is the additive inverse of L(v). That is, L(—v) = —L(v).

Proof of Part (3). We have L(civy) = ¢1L(vy) by property LT2. Let n € N and suppose that

L(civi+ -+ cyvn) = L(vy) + - + e L(vy) (4.1)
for any ¢y, ...,c, € F,vy,...,vp, € V. Let ¢q,...,¢,41 € F and vy,..., v, € V be arbitrary.
Then

n+1
L<Zi:1 Civi) = L((c1vi+ -+ + caVa) + Cot1 V1)
= L(cyvi+ -+ cvy) + L(cpi1Vaat) Property LT1
= ClL(Vl) Tt CnL(Vn) + L(Cn+1vn+1) HypOtheSiS "
=cL(vy)+ -+ enL(vy) + i1 L(viy) Property LT2

_ Z’: G L(vs)

The proof is complete by the Principle of Induction. |
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In part (1) of Proposition [4.3| the vector 0 on the left side of L(0) = 0 is the zero vector in
V', and the 0 on the right side is the zero vector in W. Occasionally there may arise a need
to distinguish between these two zero vectors, in which case we will denote 0 € V' by 0y and

Example 4.4. Let V and W be vectors spaces. The mapping V' — W given by v — Oy for all
v € V is called the zero mapping and denoted by O. Thus we may write O : V' — W such
that O(v) = 0 for all v € V| where the symbol 0 on the right side is understood to be the zero
vector in W. It is easy to verify that O is a linear mapping. |

Example 4.5. Given a vector space V', the mapping Iy : V — V given by I/ (v) = v for all
v € V is called the identity mapping. It is a linear mapping as well, and may be denoted by
I if the vector space it is acting on is not in question. |

Example 4.6. Given a vector space V and a € V, a mapping T, : V' — V given by T,(v) = v+a
for all v € V is a translation by a. Note that this mapping is not linear unless a = 0, in
which case it is simply an identity mapping. One geometric interpretation is to regard v as a
“point” in V', and v 4+ a is a new “point” obtained by translating v by a.

For example, fixing a nonzero vector

a:[Z}ERZ,
we may define T, : R? — R? by
. |z al |r+a
e[ i] -2 o

for each x = [z,y]" € R>.

Very often a mapping L : R” — R” is taken to be a change in coordinates, for instance
in order to effect a change of variables in a double or triple integral in vector calculus. In
the case of T, : R?> — R? we may regard the mapping as taking the coordinates of a point
(x,y) in zy-coordinates and converting them to wv-coordinates (u,v) by setting u = = + a and
v =y +b. Thus, if we let the symbol R?, represent R? in xy-coordinates, and let R, represent

Y,
X
Yo+ &
\
Yo+ 0 Ta(xo0)
Lo To+ a X

FIGURE 9. T, as a translation by a in R2.
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y A /I-} A
Ty
X
yO T .0 /_\\
u
Xo + b+ '0
) L To+a

FIGURE 10. T, as a change in coordinates RZ — R? .

R? in uv-coordinates, then we may define the mapping T, defined by (4.2) to be the mapping
T, :R2, — R, given by
Ta:(z,y) = (u,v) = (x+a,y +b).

In vector notation we may still write T}, : X — x+ a, since it makes no difference, mathematically,
whether we talk of points (z,y) and (u,v), or vectors

o) 1)

Thus, translation by a in R? corresponds to a change in coordinates from the zy-system ]Riy to
the uv-system R2 . Figure [J] shows the translation by a in R? interpretation of T, in the case
when a > 0 and b < 0, letting

o

{yo} ’

and Figure [L0] shows the change in coordinates interpretation of T, letting

u
0 = ug = Xg + a.
Vo

Example 4.7. Let A = [a;;] be an m X n matrix and define L : R® — R™ by L(x) = Ax; that
is,

@11 - Qip 1

Q21 - dop T2
L(x) =

Am1 " Amn Tn

for each x € R™. The mapping L is easily shown to be linear using properties of matrix
arithmetic established in Chapter 2: for each ¢ € R and x € R™ we have

L(cx) = A(ex) = ¢(Ax) = cL(x),
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and for each x,y € R" we have
Lix+y)=A(x+y)=Ax+ Ay = L(x) + L(y).
This verifies properties LT1 and LT2. |

Definition 4.8. Given linear mappings L1, Lo : V — W, we define the mapping Ly + Ly : V —
W by
(L1 + La)(v) = Li(v) + La(v)
for each v eV.
Given linear mapping L -V — W and ¢ € F, we define cL : V — W by

(cL)(v) = cL(v)
for each v € V. In particular we define —L = (—1)L.

Given vector spaces V' and W over F, the symbol L(V, W) will be used to denote the set of
all linear mappings V' — W; that is,

L(V,W)={L:V — W | L is a linear mapping}.

As it turns out, £L(V, W) is a vector space in its own right.

Proposition 4.9. If V' and W are vector spaces over F, then L(V,W) is a vector space under
the operations of vector addition and scalar multiplication given in Definition [4.8

Proof. Let Ly, Ly € L(V,W). For any u,v € V,

(L1 + Ly)(u+v) = Li(u+v) + Ly(u+v) Definition [£.§
= Li(u) + L1(v) + Lao(u) + La(v) Property LT1
= [Ly(u) + Lo(u)] + [L1(Vv) + La(v)] Axioms VS1 and VS2
= (L1 + Lo)(u) + (L1 + La)(v). Definition [4.§
For any c € F,
(L1 + Lo)(cv) = Li(cv) + La(cv) Definition [4.§
= cLy(v) 4 cLy(v) Property LT2
= c[Ly1(v) + La(v)] Axioms VS5
= (L1 + Lo)(v). Definition [4.§

Thus Ly + Ly : V — W satisfies properties LT1 and LT2, implying that L; + Ly € L(V, W) and
therefore £(V, W) is closed under vector addition. The proof that £(V, W) is also closed under
scalar multiplication is left as a problem. It remains to verify the eight axioms VS1-VS8 given
in Definition 3.1l

For any v € V' we have

(L1 4+ Lo)(v) = Li(v) + Lo(v) = Lao(v) + L1(v) = (Lo + L) (v),
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where the middle equality follows from VS1 for W. Thus L; 4+ Ly = Lo + L1, verifying VS1 for
LV, W).
Let Ly € L(V,W). For any v € V,
(L1 + (L2 + L3))(v) = La(v) + (L2 + L3)(v) = Li(v) + (La2(v) + L3(v))
= (L1(v) + La(v)) + L3(v) = (L1 + L2)(v) + L3(v)
= ((L1+ L2) + Ls)(v),
where the middle equality follows from VS2 for W. Thus

Ly + (Ly+ L3) = (L1 + L) + Ls,

verifying VS2 for L(V, W).

The zero mapping O : V' — W is a linear mapping, as mentioned in Example [4.4] and thus
O € L(V,W). Tt is straightforward to verify that O + L = L + O = L for any L € L(V, W),
and thus £(V, W) satisfies VS3.

For any L € L(V,W) we have —L € L(V, W) also, since —L = (—1)L by Definition .8 and
it has been already verified that £(V, W) is closed under scalar multiplication. Now, for any
velvV,

(L+ (=L))(v) = L(v) + (=L)(v) = L(v) + (=) L)(v)
= L(v) + (=1)L(v) = L(v) + (=L(v)) = 0,

where the first three equalities follow from Definition the fourth equality from Proposition
3.3 and the fifth equality from VS4 for W. Thus L + (—L) = O, verifying VS4 for L(V, ).
Let a € F. For any v € V,

(a(Ly + L2))(v) = a(Ly + Lo)(v) = a(L1(v) + La(v))
= aly(v) + aly(v) = (aL1)(v) + (aLg)(v)
= (ali + aly)(v),

where the middle equality follows from VS5 for W. Thus a(L; 4+ Lo) = aly + aLs, verifying
VS5 for L(V,W).

The verification of Axiom VS6 is left as a problem, as is the verification of VS7.

Finally, for any L € L(V,W) and v € V we have

(1L)(v) = 1L(v) = L(v),

by application of Definition and VS8 for W. Thus 1L = L, verifying VS8 for L(V,W). R

Definition 4.10. A bijective linear mapping is called an isomorphism.
If V and W are vector spaces and there exists a linear mapping L : 'V — W that is an
isomorphism, then V and W are said to be isomorphic and we write V=W .

Isomorphic vector spaces are truly identical in all respects save for the symbols used to
represent their elements. In fact any vector space V of dimension n can be shown to be
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isomorphic to R™. To see this, let B = (vy,...,v,) be an ordered basis for V' and observe that
the operation of taking a vector

V=2V +- -+ 2,V

in V' and giving its B-coordinates,

Vis=1]:1,
Tn
is actually a mapping v — [v]p from V' to R™ called the B-coordinate map (or the coordinate
map determined by B) and is denoted by ¢g. Thus, by definition,

es(v) = [v]s
for all v € V. The mapping ¢p is a well-defined function: given v € V| by Theorem there

exist unique scalars x4, ..., x, for which v=2,v{ +--- + z,v,, and therefore
€
pB(v) =
T

is the only possible definition for . The mapping ¢z is, in fact, linear, injective, and surjective,
which is to say it is an isomorphism.

Theorem 4.11. Let B = (vq,...,v,) be an ordered basis for a vector space V' over F. Then
the coordinate map wp : V — F" is an isomorphism.

Proof. Suppose u,v € V are such that

aq b1
pp(u)=1| 1 | =11 |=wps(v).
an b,
Thenu=>"" a;v; and v =737 bv; such that a; = b; for i = 1,...,n, whence

n

u—V:iaivi—ibivi:Z(ai—bi)vi :iOViIO,

i=1
and so u = v. Thus ¢g is injective.
Next, let
x1
e
Tn
be arbitrary. Defining v e V by v =" | z;v;, we observe that
I
SDB(V) =
Tn

and thus ¢p is surjective.
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Finally, for any u= )" a;v; and v=>_" bv; in V we have u+v =>"" (a; + b;)v;, so
ay + b1 ai b1

pp(u+v) = : =| |+ | =es(u)+esv)
an + by, an, b,

by the definition of vector addition in F”. Also for any ¢ € F we have cv = > | ca;v;, so

caq aq

pp(cu) =1 : | =c| i | =cps(v)
cay, an,

by the definition of scalar multiplication in F”. Hence g is a linear mapping.
Therefore g is an isomorphism. |

Example 4.12. Consider the vector space W C R? given by

T
W = yllx—2y+32=0
z
Two ordered bases for W are
-1 1 2 -3
B = 1, |2 and C = 1y, 0
1 1 0 1
Given
5
v=|T7]€eW,
3

find [v]s and [v]c.

Solution. Since (x,y, z) = (5,7, 3) is a solution to the equation z — 2y + 3z = 0, it is clear that
v € W. To find the B-coordinates of v, we find a,b € R such that

-1 1 5
al 1{+b|2|=|T7],
1 1 3
which is to say we solve the system
—a+ b=5
a+2b="7
a+ b=3

The only solution is (a,b) = (—1,4), and therefore
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To find the C-coordinates of v, we find a,b € R such that

2 -3 5
all|+b] O|=|T7],
0 1 3
giving the system
2a —3b=5
a+00=7
Oa+ b=3

which immediately yields the unique solution (a,b) = (7,3), and therefore

e[}
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4.2 — IMAGES AND NULL SPACES

The image (or range) of a mapping was already defined in §4.1, but for convenience we give
the definition again in a slightly different guise. We also narrow the focus to linear mappings in
particular.

Definition 4.13. Let L : V — W be a linear mapping. The image of L is the set
Img(L) ={w e W : L(v) =w for somev € V},
and the null space (or kernel) of L is the set
Nul(L) ={v eV :L(v) =0}

Note that for L : V — W we have Img(L) = L(V'). Another term for the null space of L is
the kernel of L, denoted by Ker(L) in many books.

Proposition 4.14. Let L : V — W be a linear mapping. Then the following hold.

1. Img(L) is a subspace of W.
2. Nul(L) is a subspace of V.

Proof.

Proof of Part (1). As we have shown in the previous section L(0) = 0, and so 0 € Img(L).
Suppose that wy, wy € Img(L). Then there exist vectors vy, vy € V such that L(vy) = w;

and L(vy) = wy. Now, since vi + vy € V and

L(Vl + VQ) = L(Vl) —+ L(Vg) =W + Wo,

we conclude that wy + wo € Img(L). Hence Img(L) is closed under vector addition.
Finally, let ¢ € R and suppose w € Img(L). Then there exists some v € V such that
L(v) = w, and since cv € V and

L(ev) = cL(v) = cw,

we conclude that cw € Img(L). Hence Img(L) is closed under scalar multiplication.
Therefore Img(L) € W is a subspace.

Proof of Part (2). Since L(0) = 0 we immediately obtain 0 € Nul(L).
Suppose that vi, vy € Nul(L). Then L(v;) = L(vq) = 0, and since

L(vi+ve) = L(vy) + L(v2) =0+ 0 =0,

it follows that vy + vo € Nul(L) and so Nul(L) is closed under vector addition.
Finally, let ¢ € R and suppose v € Nul(L). Then L(v) = 0, and since

L(cv)=cL(v)=c0=0

we conclude that ¢v € Nul(L) and so Nul(L) is closed under scalar multiplication.
Therefore Nul(L) C V' is a subspace. |
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Proposition 4.15. Let L : V. — W be a linear mapping. Then L is injective if and only if
Nul(L) = {0}.

Proof. Suppose that L : V' — W is injective. Let v € Nul(L), so that L(v) = 0. By Proposition
[4.3] we have L(0) = 0 also, and since L is injective it follows that v = 0. Hence Nul(L) C {0},
and L(0) = 0 shows that {0} C Nul(L). Therefore Nul(L) = {0}.

Next, suppose that Nul(L) = {0}. Suppose that L(vy) = L(v3), so L(vy) — L(ve) = 0. Then

L(vi —vy) =L(vy) — L(vy) =0

shows that vi — vy € Nul(L) = {0} and thus v; — vy = 0. Therefore v; = vy and we conclude
that L is injective. ]

Proposition 4.16. Let L : V. — W be an injective linear mapping. If vi,...,v, € V are
linearly independent, then L(vy),...,L(v,) € W are linearly independent.

Proof. Suppose vy, ..., v, are linearly independent vectors in V. Let aq,...,a, € F be such
that
a L(vy) + -+ +a,L(v,) = 0.
From this we obtain
L(ayvy + -+ -+ apvy,) =0,
and since Nul(L) = {0} it follows that

avy +---+a,v, =0.

Now, since vy, ..., Vv, are linearly independent, it follows that a; =--- =a, = 0.
Therefore the vectors L(vy), ..., L(v,) in W are linearly independent. |

Example 4.17. Define the mapping T : F*"*" — F™*" by
A - AT

T(A) >

(a) Show that T is a linear mapping.
(b) Find the null space of T, and give its dimension.
(c) Find the image of T, and give its dimension.

Solution.
(a) Let A,B € F"*" and ¢ € F. Recalling Proposition we have

T(CA):(CA)—Z(CA) :cA—QcA :C(A—QA ):cT(A),

and

A+B)—-(A+B)' A+B)—- (AT +BT
rasm)= A+BI-(A+B)_(A+B)- (AT+B]
_A+B-AT-BT A-AT B-B'

2 2 * 2
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— T(A) + T(B),

and therefore T is linear.

(b) By definition we have
Nul(T) = {A € F**" : T(A) = 0, },

where O,, is the n x n zero matrix. Now,
A—AT

T(A)=0, & =0, & A-AT=0, & A=AT,

and therefore
Nul(T) = {A € F”" : AT = A} = Sym,,(F).

That is, the null space of T" consists of the set of all n x n symmetric matrices. In a problem at
the end of §3.6 it is found that dim(Sym,,(F)) = n(n + 1)/2, and therefore

dim(Nul(T)) — @

as well.

(c) By definition we have
A-AT

Img(T) = {T(A) : A € F**"} = { A€ IF”X”} .

Now, appealing to Proposition [2.3 once more, we find that

2 )

and so the elements

(A5%) —5A- AT = AT - ()] = AT - ) -

A—AT
2
in the image of T" are skew-symmetric. Let Skw,,(IF) denote the set of n x n skew-matrices with
entries in [F:

Skw,(F) = {A ¢ F™*": AT = —A}.

We have just shown that Img(T) C Skw,(F). Suppose B € Skw,,(F), so that BT = —B. Now,
it happens that

B-BT B-(-B) 2B
222
and since there exists some matrix A for which T'(A) = B (namely we can let A be B itself),
it follows that B € Img(7") and hence Skw,,(F) C Img(T"). Therefore Img(7") = Skw,(F). In
Example we found that dim(Skw, (F)) = n(n — 1)/2, and therefore
n(n —1)

2

as well. n

T(B) - B,

dim(Img(7)) =
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Example 4.18. Let V be a vector space over F with dim(V) = n and basis B, and let
g : V. — F™ be the B-coordinate map. Now, suppose W is a subspace of V' with dim(W) = m,
and consider the restriction ¢gp|w : W — F". By Proposition [4.14] Img(¢p|w) is a subspace of
F". For brevity we define

[W]s = Img(eslw) = ws(W).

What is the dimension of [W]g? Let (w;)", be any ordered basis for W. We wish to show
that C = ([w;]5)", is a basis for [W]g. Since g is injective on V by Theorem [1.11] it is also
injective on W, and thus C is a linearly independent set by Proposition [4.16]

If x € [W]p, then x = [w]|p for some w € W, where w = c;wy + - - + ¢,,W,,, for some
1, ..., Cm € F. Now, using the linearity properties of g,

X =[aiW1 + -+ Wil = c1[wilg + - - - + e [Wi]s € Span(C)

Conversely, if x € Span(C), so that

m
X = Z C; [Wz]B
i=1

for some choice of constants cy, ..., ¢, € F, then the vector w € W given by

W = Z CiW;
i=1
is such that pg(w) = [w]p = x, and thus x € pg(W) = [W]z. Hence Span(C) = [W]g, and we
conclude that C is a basis for [W]g. It follows that dim([W]¢) = |C| = m, and therefore
dim([W]¢) = dim(WW)
for any choice of basis C for W. ]

PROBLEMS

1. Let Ax = b be a nonhomogeneous system of linear equations, where A is an m X n matrix.
Define L : R" — R™ by L(x) = Ax. Without using Theorem [2.40, prove that if xq is a
solution to the system then the system’s solution set is

xo+Nul(L) ={xo+y:y € Nul(L)}.
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4.3 — MATRIX REPRESENTATIONS OF MAPPINGS

We begin with the case of Euclidean vector spaces. Let L : R” — R™ be an arbitrary linear
mapping. For each 1 < j < n let e; be the jth standard unit vector of R", represented as an
n x 1 column vector. Thus, as ever, €; = [d;;]nx1 such that

0, ifi#y
0ij = e
1, ifi=y

Also, for each 1 < i < m let €; be the ith standard unit vector of R™, represented as an m x 1
column vector. Choosing &, = {e; : 1 < j <n} and &, = {€; : 1 <i < m} to be the bases
for R™ and R™, respectively, we view the elements of both Euclidean spaces as being column
vectors in what follows.

For each 1 < j <n we have L(e;) € R™ so that

m
L(ej) =) aije;
i=1
for some scalars ayj, ..., ay,;, and so the &,-coordinates of L(e;) are
Q1
L(e;) =
CLmj

(We could write [L(ej)]s
overly fastidious.) Now,

but since both L(e;) and [L(e;)]s,, are elements of R™ is would be

m?

1 0
0 0 1y
L(ej):a1j61+~~-+amjem:a1j . +---+amj | = .
0 1 4mj
Now, for any x € R” there exist scalars x1, ..., x, such that

n
X = E .ijej,
Jj=1

and so the &,-coordinates of x are

T

T

By the linearity of L we have

alj

L(X) = L(Z l‘j@j) = Zﬂij(ej) = ij )

amj
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and hence, defining A = [a;;]m.n,
n
D1 T, a1 - a | o
L(x) = : =l . | =Ax
n
Zj:lxjamj Am1 *°° Omn Ty

That is, the linear mapping L has a corresponding matrix A, called the matrix corresponding
to L : R" — R™ with respect to &, and &,,. Since L is arbitrary we have shown that every
linear mapping between Euclidean spaces has a corresponding matrix, and moreover we have
devised a means for determining the entries of the matrix.

Example 4.19. Let L : R? — R? be given by

I il . 3!13'1 + 21‘2 — 71’3
x2 - |4z, — 62y + Sag
3

Find the matrix corresponding to L with respect to the standard bases for R? and R3.

Solution. We must find some matrix A = [a;;]2x3 such that L(x) = Ax for all x € R?; that is,

ai1 a2 a3 il _ 3x1 + 239 — T23
ag1 Q92 Q923 4(131 —6:1:2—1—5953 )

This straightaway yields

a1 + a9 + a13T3 _ 3ZL'1 + 21‘2 — 75(]3
(2121 + A22%9 + A23X3 4ry — 6xg + Sx3 |’

from which we immediately obtain

A — {an 12 a13] _ {3 2 —7}

Gg1 Q22 Q23 4 -6 5
and we're done. |
Now that we have examined the lay of the land in the case of real Euclidean vector spaces,
it is time to turn our attention to abstract vector spaces. Recall that once an ordered basis B

for any finite-dimensional vector space V over a field F has been chosen, every vector v € V
can be represented by coordinates with respect to B using the coordinate map ¢g, where

oB(v) = [V]s

as discussed in §4.1. Depending on whatever is most convenient in a given situation, we may
write [v]z as a column or row matrix,

x1

T

or more compactly as [z, ..., z,].



122

Let L : V — W be a linear mapping, and let B = (vy,...,Vv,) be an ordered basis for V' and

C = (wi,...,Wy,) an ordered basis for W. For each 1 < j <n we have L(v;) € W, and since
W1, ..., W,, span W it follows that
L(vj) = ayjwi+ -+ + QWi (4.3)

for some scalars a;; € IF, 1 <7 < m. In terms of coordinates with respect to the bases B and C
we may write (4.3) for each 1 < j <n as

[L(VJ')]C =

CLmj

(Recall that [v;]g, written as a column matrix, will have 1 in the jth row and 0 in all other

rows.) Now, given any v € V| there exist scalars z1, ..., z, such that v = zyvy + -+ + 2, vy,
and so
xq
v]s =
Tn

Now, by the linearity of L and ¢,

[LV)], = [L(zavi+ - 4+ 20Vi) ], = 21 [L(v1)] o + - + 2 [L(Va)]

n
a1 A1n Zj:l LA
=xi| |+ ta,| | = : : (4.4)
n
am1 Umn Zj:l Ljm;

If we define the m x n matrix

aiy 0 Qin
Llse = |[Lvi)]e - [Lva) ] = |
am1 Amn
then we see from that
a11 Q1n x
L)), = : ,
Am1 Amn Tn
or equivalently
[L(V)], = [Llsc[V]s (4.5)

for all v € V. The matrix [L]p¢ is the matrix corresponding to L € £(V, W) with respect
to B and C, also called the BC-matrix of L. We may write simply as L(v) = [L]pcv if it
is understood that B and C are the bases for V' and W, respectively. In any case [L]|pc[v]s is
seen to give the C-coordinates (as a column matrix) of the vector L(v) € W. We formalize the
foregoing findings as a theorem for later use.
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Theorem 4.20. Let L : V — W be a linear mapping, with B = (v1,...,v,) an ordered basis
for'V and C = (wy,...,wy,) an ordered basis for W. The BC-matriz of L is

Llse = [[LOvD], -+ [Lva)] ] (4.6)
and
[L(v)]e = [L]sc[v]s-
forallv eV,

The situation simplifies somewhat in the commonly encountered case when L is a linear
operator on a vector space V' for which we consider only a single ordered basis B = (vy,...,Vv,).
To begin with, the BB-matrix of L, [L]sg, is denoted by the more compact symbol [L]z, and
referred to as either the matrix corresponding to L with respect to B or the B-matrix of
L. The following corollary is immediate.

Corollary 4.21. If L € L(V) and B = (vy,...,Vy) is an ordered basis for V, then the B-matriz
of L is
s = [[L0v)]5 o [EVa)] ). (4.7)
and
[L(v)]s = [L]s[V]s:
forallveV.

Example 4.22. Let L : R?> — R? be a linear mapping for which

1 1 1 1
L =11 and L =|-1]. (4.8)
1 -1
1 -1
Find the matrix corresponding to L with respect to the standard bases for R? and R?, and then
find an expression for L([z,y]").

Solution. The vectors [1,1]" and [1,—1]" are linearly independent and hence form a basis
for R?, so that in fact uniquely determines L. Let [L] denote the matrix corresponding
to L with respect to the standard bases for R? and R?, which we’ll denote by {e;,e;} and &
respectively. Theorem informs us that

) =[[Len], [L(e)]|=[Eler) Lies)].

where the last equality is simply a recognition of the fact that, for any x € R2?, the vector
L(x) € R? is already in £-coordinates. The problem is we don’t know the values of L(e;) and
L(ez). These could be figured out with a little clever tinkering using the linearity properties of
L, but the tack we’ll take is one which will work in general.

Setting
1 1
5=li i)
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by Proposition [2.6| and the definition of [L] we have

[L]H [L]{_ﬂ]: L. (4.9)

1 -1

L]B =

By the methods of §2.4 we find that B is invertible, with

11
Bfl_ 2 2
ol oy
2 2
Right-multiplying through (4.9) by B~! at once gives us [L]:
11 1 1]r: 17 [1 0
L]=|1 -1|B'=|1 -1 [f f]: 0 1].
1 -1 1 1|l —2 01

Now for any [z,y]" € R? we have
1 0 T
f(B)-wh)- o -
0 1 Y
The image of L is easily verified to be Col([L]), which is the plane y = z in R3. |

Example 4.23. Let L € L(R?**?) be given by L(A) = AT, and let & = &y, the standard
ordered basis for R?*2. Find [L]g, the £-matrix of L.

Solution. We have £ = (E;1, Ejs, Eoy, Egy), where
10 0 1 0 0 0 0
Ell - |:0 0:|7 E12 - |:0 0:|7 E21 - |:1 0:|7 E22 = [O 1:| .

E;; = 1E;; +0E2 + 0Eg; + 0Eg, Ejo = 0E;j; + 1E ;3 + 0Eg; + 0Egs,

Since

and so on, the £-coordinates of the elements of £ are
1

=}

Enle = , [Egle =

o O O
O = OO
_— o O O

1
3 [E12]€ = K [E21]€ =
0

Now, in general,
so that

and
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while L(Eq;) = Ej; and L(Eg) = Egy. By Corollary ,
e = [[LEBW)]e [LE)], [LE2)], [LE2)]| = [Bule Bale [Eule Exle],

and therefore

[L]e =

o O o
O = OO
oo = O
—_ o O O

is the £-matrix of L. ]

Theorem 4.24. IfV and W are vector spaces over F with dim(V') = n and dim(W') = m, then
LV, W) = Fmxn,

Proof. Let B = (vy,...,v,) and C = (wy,...,W,,) be ordered bases for V" and W, respectively.
Proposition established that £(V, W) is a vector space, so define ® : L(V, W) — F™*" by
®(L) = [L]gc. By Theorem m,

(L) = [SOC(L(VI)) wc(L(Vn))],

which shows that ® is a well-defined function since the C-coordinate map p¢ : W — F™ is a
well-defined function by the discussion preceding Theorem [4.11. We will show that & is an
isomorphism.

Let Ly, Ly € L(V,W). Then by Theorem [4.20]
O(Ly + Ly) = [L1 + Lo|sc = [[(Ll +L)(vi)]e - (Lo + L2)(Vn)]c}?

that is, ®(L; + Lo) is the matrix with jth column vector [(L; + L2)(vy)]e for 1 < j < n. Now,
since ¢ : W — F™ is linear by Theorem 4.11},

(L1 + Lo)(vj)] o = [La(v;) + La(v;)] o = e (La(v)) + La(v;))
= ge(L1(vy) + we(La(v)) = [Li(v))] o + [La(v))]
and so by the definition of matrix addition,
®(Ly -+ L) = [T + [Eav)]g - [Li(w)]o + [La(vi]]
= [[Lavi)]e o [Lavale] + [[Eatvo]e - [La(va)])
=®(Ly) + O(Lo).
Next, for any ¢ € F and L € L(V, W), again recalling that ¢ is linear,
®(cL) = [ [(cL)(v)], } _ [ [eL(v;)], ]
_ [ c[L(v))], } :C[... [Z(v)], ]
= C(I)(L),

where the fourth equality follows from the definition of scalar multiplication of a matrix. We
see that ® satisfies properties LT1 and LT2, and hence is a linear mapping.
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Let L € Nul(®), so that

(L) = [Lse = [[Lv)], -+ [Lva)]o| = O
Thus, for each 1 < j < n,
we(L(vy)) = [L(v))] o = (0],

which shows that L(v;) € Nul(pc). However ¢ is injective, so Nul(¢¢) = {0} by Proposition
4.15 and hence L(v;) = 0. Now, for any v € V there exist ¢y, ..., ¢, € F such that

n

VvV = E CiVj,

J=1

L(v) = L(Z cjvj) = chL(vj) = chO =0.

Thus L(v) = 0 for all v € V, which is to say L = O, the zero mapping. It follows that
Nul(®) C {O}, and since the reverse containment obtains from Proposition [4.3|(1), we have
Nul(®) = {O}. Hence @ is injective by Proposition [4.15

Next, let A € F™*" so

and then

A= [al e an}
with
alj
aj = < F
Ay

for each 1 < j <mn. Let L € L(V,W) be such that

L(v;) = a;;wi + -+ + QWi
for each 1 < j < n, so that
[L(vj)]e = a;.
Then
O(L) = [[L(vl)}c [L(vn)}c] —[a; - a,]=A,
which shows that ® is surjective.

Since ® : L(V,W) — F™*" is linear, injective, and surjective, we conclude that it is an
isomorphism. Therefore £(V, W) = Fm™*™. |

Corollary 4.25. Let V and W be finite-dimensional vector spaces over F with ordered bases B
and C, respectively. For every mapping L € L(V,W) there is a unique matriz A € F™*" such
that A = [L]gc. For every matriz A € F™*" there is a unique mapping L € L(V, W) such that
[Llgc = A.

Proof. In the proof of Theorem it was found that ® : L(V, W) — F™*" given by ®(L) =
[L]gc is an isomorphism. The first statement of the corollary follows from the fact that ® is
a well-defined function on £(V,W), and the second statement follows from the fact that ® is
surjective and injective. ]
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Example 4.26. Another way to argue that, in particular, there is a unique matrix A corre-
sponding to a linear mapping L : V — W with respect to bases B and C is as follows. Suppose
that [L]gc, [L]ge € F™*™ are two matrices corresponding to L with respect to B and C. Then
[L(V)le = [L]sc[v]s and  [L(v)]e = [L]ic[V]s,
and thus
([L]se = [L]ie)[V]s =0

for all v € V. Now, setting B = [L]|gc — [L]e and observing that [v;|g = [0;j]nx1, We have
B[v,]g =0 for each 1 < j <mn, or
11 - Aip 51j Zzzl b1k5kj blj 0
Blvils=| : . L= : :
A1 Gmn] LOni > oy binkO bimj 0
Thus the jth column vector of B is 0, and since 1 < j < n is arbitrary we conclude that all the

columns of B consist of zeros and so B = O,,,,,. Therefore [L|gc — [L]ge = Om.n, and it follows
that [L]BC = [LMS’C |

Though there cannot be two distinct matrices corresponding to the same linear mapping
L :V — W with respect to the same bases B and C, a different choice of basis for either V' or
W will result in a different corresponding matrix for L. This turns the discussion toward the
idea of changing from one basis B of a vector space V' to another basis B’, the subject of the
next section.

PROBLEMS
1. Suppose that L : R? — R3 is the linear transformation given by

x 2
L(L}D = | =5z + 132,
2 —71’1 + 16ZL‘2

Find [L]ge, the matrix corresponding to L with respect to the ordered bases

1 —1 0
o= (L) wa o= ([ o). [3]. [
-1 2 2
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4.4 — CHANGE OF BASIS

Let V' be an n-dimensional vector space over [F, where n > 1. Let
B={vi,...,vp,} and B ={v},...,v,}

be two distinct bases for V. We would like to devise a ready means of expressing any vector
v € V given in B-coordinates in terms of B’-coordinates instead. In other words we seek a
mapping F* — F" given by [v]|g — [v]s for all v € V. How to find the mapping? Consider
the identity mapping Iy : V' — V., which of course is linear. By Theorem the matrix
corresponding to [y, with respect to B and B’ is

Wlss = [[Iv(v)]y o V)] = [Vile - vals] (4.10)

and for all veV

[Iv]ss [vls = [Iv(v)]s = [V]s
This is it! To convert any v € V' from B-coordinates to B’-coordinates we simply multiply the
column vector [v|g by the matrix [I]gg, which happens to be the matrix corresponding to the
identity matrix [y, with respect to B and B’, but we will call it the change of basis matrix
from B to B’ (or the coordinate transformation matrix from B to B’) and denote it by
Is5. We have proven the following.

Theorem 4.27. Let B = (vy,...,v,) and B' = (v},...,v)) be two ordered bases for V, and
define Igp € ™" by
Ipg = |[vilg - [Vn]B’]-
Then
Igs [V = [V]s
forallveV.

Clearly to find Iss we must determine the B’-coordinates of the vectors in B. For each
1 < j < n there exist scalars ayj,. .., a,; such that

/ /
Vj =Vt gV,
and so
alj
vils = | :
Clnj

As the following example illustrates, the task of determining Igs in practice amounts to solving
a system of equations that has a unique solution.

Example 4.28. Let V' be a vector space with ordered basis B = (vy, va).

(a) Show that B’ = (v, v4) with v} = —v; + 2v, and v}, = 3v; + v, is another ordered basis
for the vector space V.

(b) Determine the change of basis matrix from B to B, Igp:.

(c¢) Determine the change of basis matrix from B’ to B, Ig .
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Solution.
(a) We see that dim(V) = |B| = 2, and so by Theorem [3.54(1) to show that B’ is a basis for V'
is suffices to show that v} and v/, are linearly independent. Suppose that ¢, co € F are such that

c1vy + vy = 0. (4.11)

This implies that

c1(—vy + 2vy) + c2(3vy + vo) = 0,
or equivalently

(—c1 4+ 3c)vi + (2¢1 + c2)vao =0

Since vq and vy are linearly independent we must have

—c1—|—302:O
261+ 02:0

This system readily informs us that ¢; = ¢; = 0, and so (4.11]) admits only the trivial solution.
Therefore v} and v/, must be linearly independent.

(b) By Theorem we have
IBB’ = |:[V1]B/ [V2]31i| .
We set

2

Vil = Bl} and  [vo]p = Bj,

which is to say
/ / / /
T1Vy +Tavy =V and v+ 4avy = Vo

Using the fact that the coordinate map ¢p is a linear mapping, we obtain

1
o] = il = nlv) = gu(erv! + aav) = a16(v) + 2agn(v)

= 21[vi]s + 22[Vh]s = 11 [_;1 + zo E’} = _; ﬂ Bj : (4.12)
and similarly
R AP A ] A R O

From (4.12) and (4.13]) we obtain the systems

—xr1+ 32 =1 and —U +3y2 =0
200 + 22=0 20+ Yo =1

Solving these systems yields x; = —1/7, xg = 2/7, y; = 3/7, and y2 = 1/7. Therefore we have

Ips = [[Vl]s' [V2]B’] = [2 zj = [_%; ?;;]

(c) As for the change of basis matrix from B’ to B, that’s relatively straightforward since the
vectors in B’ were given in terms of the vectors in B:

tow = (vl (] =| 3
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Observe that
Igplps = Ipplpn = I,

so that Iz and Igs are in fact inverses of one another. [ |

Example 4.29. Consider the vector space W C R? given by

T
W = yllx—2y+32=0
z
Two ordered bases for W are
-1 1 2 -3
B=(u,uy) = 1,12 and C = (vy,Vve) = 1{,] O
1 1 0 1

Find the change of basis matrix from B to C, and use it to find the C-coordinates of v.€ W
given that [v]s = [—1 4]

Solution. By Theorem we have
Inc = [[ul]c [112]0},

and so we must find the C-coordinates of u; and u,. Starting with u;, we find a,b € R such
that avy, + bvy, = uy; that is,

2 -3 —1
all|+0f O|=| 1f,
0 1 1

which has (a,b) = (1, 1) as the only solution, and hence

wie-[]

Next, we find a,b € R such that avy; + bvy = uy; that is,

2 -3 1
alll+b| 0|=]2],
0 1 1

which has (a,b) = (2,1) as the only solution, and hence

e[}

1 2]
Iscz{l 1

is the change of basis matrix from B to C. Now,

ve =Teella =1 ]| 73] = 3]

which agrees with the results of Example 4.12 |

Therefore
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Example 4.30. Two ordered bases for the vector space
PQ(R) = {CZO +a1xr + CLQ.I'Q tag,a1,0 € ]R}

are
B=(1,z,2%) and D= (1,1+z,1+x+2%).

(a) Find the change of basis matrix from B to D.
(b) Find the change of basis matrix from D to B.

Solution.
(a) We have B = (v1,va,v3) with vi = 1, vo = 2, and v3 = 22, and D = (v}, v}, v}) with
vi=1,vh=1+uz,and v = 1 + 2 + 22. By Theorem [£.27]

Lo = |[tlp [alo [%)p)]-

Setting
aq bl C1
Mp=ax|, [rlp=|b|, [#Yp=|c2],
as b3 C3

three equations arise:
ar(1) +as(1 4+ ) +az(1 +z +2°) =1,
byi(1) + by(1 + ) + b3(1 4z + 27)

z,

c1(1) +eo(1+2) +e3(1 + 2+ 2%) = 2”

Rewriting these equations as
(ay + ag + as) + (ag + a3)z + azz® = 1,
(by + by + bs) + (b + b3)z + bsz® = x,
(c1 + 2+ c3) + (o + e3)x + c32® = 22,

we obtain the systems

a1+a2+a3:1 b1+b2+b320 01+CQ+C3:O
CL2+CL3:0 b2+b3:1 CQ+C‘3,:O
as = 0 bg =0 C3 = 1
which have solutions
aq 1 bl- —1 _Cl 0
Qo | = 0 s b2 = 1 s Cy | = —1
as 0 b3 C3 1

Therefore




(b) By Theorem [£.27]
IDB = [[1]3 [1 + ZL’]B [1 +x+ ZE2]B .

Clearly
1 1 1
[1][3: O, [1+$]B: 1 , [1+$+x2]82 1 ,
0 0 1
and therefore
1 1 1
Ipp=1]0 1 1
0 0 1
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Proposition 4.31. Let B and B’ be ordered bases for a finite-dimensional vector space V.. Then

the change of basis matrix Igg is invertible, with
—1
Lig = lpg:

Proof. By Theorem [4.27
Igs (vl = [Vl and Igg[v]s = [v]s,
for all v € V, and so
Isslss [Vls = Iss[Vls = [V]s
and
IssIss(vls = Iss[V]s = [V]s

forallveV.

(4.14)

(4.15)

Let n = dim(V), and fix x € F". By Theorem the coordinate maps ¢g, op : V — F”

are isomorphisms, and so there exist unique vectors u,u’ € V such that
pp(n) =[us=x and p()=[]p =x,

whereupon equations and give

Ipplppx =x and Igplppx = X,
respectively. Since x € F" is arbitrary, we conclude that

(Igplps)x =x and (Ipplpp)x =x

for all x € F". Tt follows by Proposition [2.12(1) that

Ipplsgse =1, and Igplss=1,,

and therefore Igp is invertible with Igé, = Ipg.
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Now suppose that L is a linear operator on a vector space V', which is to say L is a linear
mapping V' — V. Let B = (vy,...,V,) be an ordered basis for V. For any v € V we have
L(v) € V given by

[L(v)]s = [L]s[V]s,
where

L= [[Lo0)]g - [L(vi)] o]

by Corollary 4.21} If B' = (v}, ..., v/,) is another ordered basis for V', then another corresponding
matrix [L]g is obtained for the operator L:

Lo = [[L0D)]y - L] ).
where for any v € V' we have L(v) € V given by
[L(v)le = [Lls[v]s-

We would like to determine the relationship between [L]g and [L]g.
Recall that if AB is defined and B = [by --- b,], then by Proposition

AB:A[bl bn}:[Abl Abn}.
We therefore have
Lo [Ls = Tow | [LOv)]5 - [L(Vva)] 4]
= [t [£w0)] -+ Taw (L]
= [[L(Vl)}g/ U [L(Vn)}g/] = [L]BB’, (416)
the last equality a direct consequence of Theorem On the other hand,
Llstss = Ly [ils -+ als] = [Llsbvils - [Llslvals]
- [[‘L(V1>]B/ e [L(Vn)]g/} = [L]BB’ (417)
Comparing and ((4.17)), we have proven the following.

Proposition 4.32. Suppose V' is a finite-dimensional vector space and L € L(V). If B and B’
are ordered bases for V', then

I [L]g = [Llplps = [L]ss-

Note that [L]gg is the matrix corresponding to the operator L : V' — V in the case when
each input v for L is given in B-coordinates but the output L(v) is given in B’-coordinates.
That is, the V' comprising the domain of L has basis B and the V comprising the codomain of
L has basis B!

Corollary 4.33. Suppose V' is a finite-dimensional vector space and L € L(V). If B and B’
are ordered bases for V', then

[L]B’ - IBB/ [L]BIgzla' .
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Proof. Suppose that B and B’ are ordered bases for V. Then Ips [L|s = [L]|p1ss by Proposition
4.32] and thus

since the matrix Igp is invertible by Proposition [4.31] [ |

PROBLEMS

o= (L)) e m= () [3))

are bases for R? (the former being the standard basis).

1. The ordered sets

(a) Find the change of basis matrix I¢s for changing from the basis £ to the basis B.
(b) Use I¢p to find the B-coordinates of x = [2, —5] .
(¢) Find Ip¢ using Proposition [4.31]

o~ (BHE]) = e~ ()

are bases for R%. Find the change of basis matrices Izc and I¢g.

2. The ordered sets
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4.5 — THE RANK-NULLITY THEOREM

Given a matrix A € F"*" recall from §3.5 that the nullity of A is defined to be nullity(A) =
dim(Nul(A)), and also recall from §3.6 that the rank of A may be characterized as rank(A) =
dim(Col(A)). We now attribute similar terminology to linear mappings.

Definition 4.34. Let L : V — W be a linear mapping. The rank of L is the dimension of the
image of L,

rank(L) = dim(Img(L)),
and the nullity of L is the dimension of the null space of L,

nullity (L) = dim(Nul(L)).

From here onward we will use the new notation rank(L) and nullity(L) interchangeably with
the old notation dim(Img(L)) and dim(Nul(L)), since both are used extensively in the literature.
The motivation behind Definition will become more apparent presently.

In the statement of the next proposition we take

Img(L)]e = pc(Img(L)) = {¢c(w) : w € Img(L)} = {[w]c : w € Img(L)}.

Proposition 4.35. Let V and W be finite-dimensional vector spaces with ordered bases B and
C, respectively. If L -V — W s a linear mapping, then

[Img(L)]c = Col([L]ge).

Proof. Let B = (by,...,b,), and suppose L : V — W is a linear mapping. By Theorem m
we have

[Lse = [[L0)], -+ [LO],].

Now fix y € [Img(L)]c. Then y = [w]¢ for some w € Img(L), and so there exists some
v € V, where
U1

[V]B =11

such that w = L(v). Since v = v;by + - - - + v,b,,, and both L and ¢¢ are linear mappings, we
have

y = [w]e = [L(viby + - - + v,by)]e = vi[L(by)]e + - - - + vu[L(by)]e € Col([L]se),

and therefore [Img(L)]c € Col([L]ac)-
Conversely, y € Col([L]pc) implies that

y = z1[L(b1)lc + -+ + xn[L(by)]e
for some x1,...,x, € F, and then
y = [L(xiby + -+ + 2,by,)le
for L(x1by + - -+ 4+ z,by,) € Img(L) shows y € [Img(L)]c. Hence Col([L]|pc) C [Img(L)lc. M
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As a consequence of Proposition we have
rank([L]gc) = dim(Col([L]gc)) = dim([Img(L)]¢) = dim(Img(L)) = rank(L),

where the third equality follows from Example [£.18 Thus the rank of a linear mapping
L :V — W equals the rank of its corresponding matrix with respect to any choice of ordered
bases for V and W, and so the thrust behind Definition [£.34] should now be clear. We have
proven the following.

Corollary 4.36. If V and W are finite-dimensional and L € L(V,W), then
rank(L) = rank([L]),

where [L] is the matriz corresponding to L with respect to any choice of ordered bases for V. and
W.

Theorem 4.37 (Rank-Nullity Theorem for Mappings). Let V' be a finite-dimensional
vector space. If L -V — W s a linear mapping, then

rank(L) + nullity (L) = dim(V).

Proof. Let n = dim(V'), p = nullity(L), and ¢ = rank(L). We must demonstrate that n = p+g.
If nullity(L) = n, then Nul(L) = V' by Theorem [3.56|3); that is, L(v) = 0 for all v € V, so
Img(L) = {0} and therefore

nullity (L) + rank(L) = dim(V') + dim({0}) = n + 0 = n = dim(V)

as desired.
If nullity(L) = 0, then Nul(L) = {0}. Let {vi,...,v,} be a basis for V. The set
{L(vy),...,L(v,)} C Img(L) is linearly independent by Proposition 4.16| Now,

S = Span{L(vy),...,L(v,)} € Img(L)

since Img(L) is a subspace of W. Let w € Img(L), so that w = L(v) for some v € V. There
exist scalars ¢q,...,c, such that v=c¢;vy +--- + ¢,v,, and then

w=1Lv)=1L (Z civz-> = Z c;L(v;) € Span{L(v1),...,L(v,)} =S
' i=1
shows that Img(L) C S. Hence S = Img(L) and we've shown that S is a basis for Img(L).
Therefore

nullity(L) + rank(L) =0+ |S| = 04+ n = dim(V)
once again.

Finally, assume that 0 < nullity(L) < n, so that Nul(L) is neither {0} nor V. Since
Nul(L) # V there exists some v € V such that L(v) # 0, which implies that Img(L) # {0}
and hence rank(L) = ¢ > 1. Also Nul(L) # {0} implies that nullity(L) = p > 1. Thus
Img(L) has some basis {wy,...,w,} # @, and Nul(L) has some basis {uy,...,u,} # @. Since
{w1,...,w,} CImg(L), for each 1 < i < ¢ there exists some v; € V such that L(v;) = w,. The
claim is that
B={uy,...,u,,vy,...,v,} (4.18)
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is a basis for V.
Let v € V. Then L(v) = w for some w € W, and since w € Img(L) there exist scalars
by, ..., by such that

W =bywy + -+ byw,.
Hence, by the linearity of L,
L(v)=w=0L(vi)+ -+ b,L(vy) = L(byvi + - - - + byvy),
and so
L(v —(byvi+ -+ byvy)) = L(v) — L(byvy + - - + byvy) = 0.

So we have v — (byvy + - - + b,v,) € Nul(L), and since {uy,...,u,} is a basis for Nul(L) there
exist scalars ay, ..., a, such that

v—(bivi+ -+ bvy) = aug + -+ - + apu,.
From this we obtain
vV =au+ -+ ayu, +byvy +--- +b,v, € Span{uy,...,u,, vy,...,v,},

and therefore

V = Span{uy,...,u,,vy,...,v,}.
It remains to shows that uy,...,u,, vi,..., Vv, are linearly independent. Suppose that
auy + - -+ apuy, + vy + -+ b,v, =0. (4.19)
Then
0= L(ajuy + -+ - + apu, + byvy + - - + byvy)
= L(ajuy + - - -+ apu,) + L(byvy + - - -+ byvy)
=arL(w) + -+ apL(uy) + biL(vi) + - + by L(vy)
=a;0+---+a,0+bywy +---+b,w,
=bywy + -+ bWy,
and since wy, ..., w, are linearly independent we obtain b; = --- = b, = 0. Now becomes
aju; +- - - +ayu, = 0, but since uy, ..., u, are linearly independent we obtain a; = --- = a, = 0.

Hence all coefficients in (4.19) are zero and we conclude that the set B in (4.18) is a linearly
independent set.
We have now shown that B is a basis for V', from which is follows that

dim(V) = |B| = p + ¢ = nullity(L) + rank(L)

and the proof is done. |

Notice that the rank-nullity theorem we have just proved holds even in the case when W is
an infinite-dimensional vector space!
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Example 4.38. Recall the mapping 7" : F**" — F"*" given by
A - AT
= SR

in Example [£.17] We found that Nul(T") = Sym,, (F) in part (b) of the example, and so by
Theorem we obtain

T(A)

1 -1
dim(Img(T)) = dim(F™™) — dim(Nul(T)) = n? — ”(”; ) _ ”<"2 ),
recalling from Example that dim(F"*") = n?. We see that, with Theorem in hand,
the determination of dim(Img(7")) does not depend on knowing that Img(7") = Skw,,(F). Once
the dimensions of a linear mapping’s domain and null space are known, the dimension of the

image follows immediately. |

Example 4.39. Determine the dimension of the subspace U of R™ given by
U={xeR":a-x =0},
where n > 1 and a # 0.

Solution. Define the mapping L : R® — R by
L(x) =a-x,

which is easily verified to be linear using properties of the Euclidean dot product established in
§1.4: for any x = [x1,...,2,) and y = [y1,...,¥,) in R” and ¢ € R we have
Lix+y)=a-(x+y)=a-x+a-y=Lx)+ L(y)
and
L(ex) = a- (ex) = c¢(a-x) = cL(x).
Moreover,
Nul(L) ={xeR": L(x)=0} ={xeR":a-x=0} =U.

Now, Img(L) is a subspace of R by Proposition [4.14] Since dim(RR) = 1, by Theorem [3.56|2)
dim(Img(L)) is either 0 or 1. But dim(Img(L)) = 0 if and only if Img(L) = {0}, which cannot
be the case since a # 0 implies that

L(a)=a-a=|al* #0,

and therefore dim(Img(L)) = 1. (By Theorem [3.56(3) it further follows that Img(L) = R
since dim(Img(L)) = dim(R), but we do not need this fact.) Recalling that dim(R™) = n and
Nul(L) = U, by Theorem we have

n = dim(R") = dim(Nul(L)) + dim(Img(L)) = dim(U) + 1,
and hence dim(U) =n — 1. That is, U is a hyperplane in R". [

Theorem 4.40 (Rank-Nullity Theorem for Matrices). If A € F"*"  then
rank(A) + nullity(A) = n.



139

Proof. Suppose that A € F"™*". Let L : F" — F™ be given by L(x) = Ax. Then L is a linear
mapping such that

Nul(L) ={xeF": L(x) =0} ={x € F": Ax =0} = Nul(A).
Also by Proposition [4.35] we have
Img(L) = Col(A).
with respect to the standard bases. Now by the Rank-Nullity Theorem for Mappings we have
n = dim(F") = rank(L) + nullity (L) = dim(Img(L)) + dim(Nul(L))
= dim(Col(A)) + dim(Nul(A)) = rank(A) + nullity(A).

That is, rank(A) + nullity(A) = n, as desired. |

Example 4.41. Find the dimension of the solution space S for the system of equations

4r1 + Txg — w3 =0
21’1 — T9+ T3 = 0
and also find a basis for S.

Solution. Letting

X1

4 7 -7

X = |T9 and A:{z 1 1],
Zs3

we find that S is the set of all x € R? that satisfy the matrix equation Ax = 0, and so
S = Nul(A). By the Rank-Nullity Theorem for Matrices we have

dim(S) = nullity(A) = dim(R?) — rank(A) = 3 — rank(A).

A _ |:4 7 _7T:| —2ro+ri—ry |:O 9 _2 — 7T:|

Since

2 —1 1 2 —1 1
and the row rank of the matrix on the right is clearly 2, it follows that rank(A) = 2 and so
dim(S)=3-2=1.
Next we set to the task of finding a basis for S. From the second equation in the system we
have
To = 25(]1 + xIs3. (420)
Putting this into the first equation then yields

dxy + 7(2x1 + x3) — T3 = 0,

and thus
T—17

18

T = xIs. (421)

Substituting this into (4.20]), we get

™—=7 T+ 2
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From (4.21)) and (4.22)), replacing x3 with ¢, we find that

T—7 m+2 T
= 1] R 4.2
S {t{ 5 9 ,} t e }, (4.23)

.
B:{{W—777T—|—271:| }
18 9

would qualify as a basis for S. This is not the only possibility, however, since any nonzero element
of S will span S. For instance, if we set ¢ = 18 we find from (4.23)) that [ — 7,27 +4,18]" is in
S, and so

which shows that

B={[r—72r+4,18)"}
is a basis for S. [ |

Example 4.42. Find the dimension of the subspace of R” consisting of all vectors that are
orthogonal to the vectors

ri=[1,1,-2,3,4,56]" and ry=10,0,2,1,0,7,0]",
Solution. The subspace of R” in question consists of the set of vectors
S={xecR":r;-x=0and ry-x=0}.
Indeed, if we define A € F"™*" by

then we find that

By Theorem we have
dim(S) = dim(Nul(A)) = 7 — rank(A).
Now, A is already in row-echelon form, and so it should be clear that the row vectors of A,

which are r{ and rj , are linearly independent. Thus rank(A) = row-rank(A) = 2, and therefore

dim(S) =7—2=5. |



141

4.6 — DIMENSION AND RANK FORMULAS

Proposition 4.43. If U and W are subspaces of a vector space V', then
dim(U + W) = dim(U) + dim(W) — dim(U N W).

Proof. Suppose that U and W are subspaces of a vector space V. The product space U x W
defined in section 3.1 is a vector space, and so we define a mapping L : U x W — V by
L(u,w) = u —w. For any (u,w), (u/,w') € U x W and ¢ € R we have
L((u,w)+ (0, W) =Llu+u,w+w)=(u+u)— (w+w)
=(u—w)+ (u—w)=L(uw)+ L', w)
and
L(c(u,w)) = L(cu,ew) = cu — ew = ¢(u — w) = cL(u, w),
so L is a linear mapping.
If v € Img(L), then there exists some (u,w) € U x W such that

Lu,w)=u—w=yv,

sov=u+(—w) €U+ W and we have Img(L) CU+W. If ve U+ W, then v=u+w for
some u € U and w € W, and then

Lu,—w)=u—(—w)=ut+w=v

shows v € Img(L) and thus U + W C Img(L). Therefore Img(L) =U + W.

Let u € U and w € W, and suppose (u,w) € Nul(L). Then L(u,w) =u —w = 0, which
implies that w = u and thus (u,w) = (u,u) with u € U N W. From this we conclude that
Nul(L) C {(v,v) : v € UNW}, and since the reverse containment is easy to verify we obtain

Nul(L) ={(v,v) :ve UNnW}. (4.24)
Let {vy,...,Vv,} be a basis for U N W. We wish to show the set
B:{(VZ',VZ‘) 01 SZST’}

is a basis for Nul(L). Let (u,w) € Nul(L). By (4.24)), (u,w) = (v,v) for some v.€ UNW, and
since there exist scalars c¢q,..., ¢, such that v.=c¢;vy +--- + ¢,v,, we find that
(u,v) = (Z CiVi, Z CNz‘) = Z(Q‘Wy Civi) = Z ci(vi, vi)
i=1 i=1 i=1 i=1
and thus
(u,v) € Span{(v;,v;) : 1 <i <r} = Span(B). (4.25)

On the other hand if we suppose that (4.25)) is true, so that (u,w) = >"._, ¢;(v;, v;) for some
scalars ¢, ..., c,, then

T

L(u,w)=1L (Z ci(vi, vl)> = ZciL(vi,vi) = Zci(vi —v;)=0

i=1 i=1
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demonstrates that (u,w) € Nul(L) and so

Nul(L) = Span{(v;,v;) : 1 <14 <r} = Span(B).
Next, set

T

Z Ci("z’, Vi) = (0, 0)

=1

Then

T

(0, 0) = Z(CZ‘VZ', Cin‘) = (zr: CiVi, i Cin’) s
=1 =1 =1

which gives

ZCZ‘VZ‘ =0

i=1
and hence ¢; = --- = ¢, = 0 since vy, ..., Vv, are linearly independent. Therefore B is a linearly
independent set and Span(B) = Nul(L), which shows that B is a basis for Nul(ZL) and then

dim(Nul(L)) = |B| = r = dim(U N W).
Because L : U x W — V is a linear mapping,

dim(U x W) = dim(Nul(L)) 4+ dim(Img(L))
by Theorem But Img(L) = U + W and dim(Nul(L)) = dim(U N W), so that

dim(U x W) = dim(U N W) + dim(U + W).
In §3.5 we established that dim(U x W) = dim(U) 4+ dim(W), and thus

dim(U) + dim(W) = dim(U N W) + dim(U + W)

obtains and the proof is done. |

Recall the concept of a direct sum introduced in section §3.3. The dimension formula
furnished by Proposition becomes especially nice if a vector space V happens to be the
direct sum of two subspaces U and W.

Proposition 4.44. Let V be a vector space. If U and W are subspaces such that V =U & W,
then dim(V') = dim(U) + dim(W).

Proof. From UNW = {0} we have dim(U N W) = 0, so that
dim(U + W) = dim(U) + dim(W)
by Proposition [4.43] The conclusion follows from U + W = V. |

Theorem 4.45. Let V' be a vector space, and let Uy, ..., U, be subspaces of V. Then

V= é Uy = dim(V) = idim(Uk).

k=1



143

Proof. The statement of the proposition is trivially true when n = 1. Let n € N be arbitrary,
and suppose the proposition is true for n. Let Uy, ..., U, be subspaces of a vector space V'

such that
n+1

V=@U.
k=1

Define U = Uy + --- 4+ U, and W = U,,,1, so that V. = U + W. Note that U is a subspace of V'
by Proposition [3.20, By Definition it is immediate that

UNW =Up Ny _ Ui = {0},
k=1
and so in fact V=U & W.
Let v € U, so that for 1 < k < n there exist vectors u, € Uy such that

n
E up = V.
k=1

Suppose that for 1 < k < n the vectors uj, € Uy are such that

n
/ j—
u, =v
k=1

also. Setting u,.1 = u;,; = 0, we obtain
n+1 n+1 n+1

V:Zuk:ZuzeV:@Uk,
k=1 k=1 k=1

and so by Theorem we must have uy = uj, for all 1 <k <n+ 1. Since v € U is arbitrary,
we conclude that for each v € U there exist unique vectors u; € Uy,...,u, € U, such that
v =u; + -+ u,, and therefore
n
Y
k=1

by Theorem Now, by Proposition and our inductive hypothesis,

n n+1
dim(V) = dim(U) + dim(W) = Y _ dim(Uy) + dim(U,11) = Y _ dim(U;)
k=1 k=1
as desired. [ |

Proposition 4.46. If V is a subspace of R™, then dim(V) + dim(V+) = n.

Proof. Suppose that V' is a subspace of R". Setting » = dim(V), so that r < n, let
BV — {b17~--7b7'}

be a basis for V', where
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for each 1 < i <r. Let A be the n X n matrix given by

L
i (b e b
| 0 ] | O 0

and observe that
ROW(A> = Span{bh s 7br7 0} = Span{bl, c.. 7br} =V.

Now, define L : R®™ — R" to be the linear mapping given by L(x) = Ax for all x € R". Since
Img(L) = Col(A) by Proposition [4.35, we have

dim(Img(L)) = dim(Col(A)) = rank(A) = dim(Row(A)) = dim(V).

Suppose x € Nul(L), so that Ax = 0 and we obtain b]x =0forall 1 <i<7r. Let ve V.
Then v = a1b; + - - - + a,b, for some aq,...,a, € R, and since

x-v=v'x=(a;b] +---+ab )x=ab/x+---+ab'x=0a(0)+--+a,0)=0

we conclude that x € V+ and so Nul(L) C V+.
Now suppose that x € V+. Then x-v = 0 for all v € V, and in particular x - b; = 0 for
each 1 < i <. Thus

_bIX- [x - bl—
b/x| |x-b.| |.|_
L(x) = Ax = o= 0 =] =0
. . 0
o] [ 0 |

which shows that x € Nul(L) and so V*+ C Nul(L).
We now have Nul(L) = V*, and so of course dim(Nul(L)) = dim(V*). By Theorem [4.37]

dim(R") = dim(Nul(L)) 4+ dim(Img(L)),
and from this we obtain n = dim(V+) + dim(V). |

For the remainder of this section we develop a few formulas involving the ranks of matrices
that will be useful later on.

Theorem 4.47.

1. If A € F™" is invertible, then rank(A) = rank(A~1).

2. If A € F™*™ s invertible and B € F™*" then rank(AB) = rank(B).

3. If B € ™™ is invertible and A € F™*", then rank(AB) = rank(A).

4. If A, C € ™" are invertible and B € F*™*", then rank(ABC) = rank(B).
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Proof.

Proof of Part (1). Suppose A € F™*" is invertible. Since A™! is also invertible, both A and A~*
are row-equivalent to I,, by Theorem and then by Theorem we have rank(A) = rank(I,)
and rank(A ') = rank(I,). Therefore rank(A) = rank(A~!) = n.

Proof of Part (2). Suppose A € F™*™ is invertible and B € F™*". By the Rank-Nullity
Theorem for Matrices,

rank(AB) + nullity(AB) =n and  rank(B) + nullity(B) = n,

and hence

rank(AB) + nullity(AB) = rank(B) + nullity(B). (4.26)

Now, since A is invertible,
ABx)=0 = A'[ABx)]=A"'0 = Bx=0,
and so
xe€Nul(B) & Bx=0 & ABx)=0 & (AB)x=0 < xe€ Nul(AB),

Hence Nul(B) = Nul(AB), so that nullity(B) = nullity(AB), and then (4.26)) gives rank(AB) =
rank(B).
Proof of Part (3). Suppose B € F™*" is invertible and A € F™*". Since BT is invertible by
Proposition [2.32] we use Problem 3.8.2 and Part (2) to obtain

rank(AB) = rank ((AB)") = rank(B'A") = rank(A") = rank(A).

Proof of Part (4). Suppose A, C € F"*™ are invertible and B € F"*". We have
rank(ABC) = rank (A(BC)) = rank(BC) = rank(B),

where the second equality follows from Part (2), and the third equality follows from Part (3). W
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4.7 — COMPOSITIONS OF MAPPINGS

Definition 4.48. Given mappings S : X — Y and T :Y — Z, the composition of T with S
1s the mapping T oS : X — Z given by

(T'o 5)(x) = T(S(x))
forallz € X.
The composition operation o is not commutative in general (i.e. T'o S is generally not the

same function as S oT'), but it does have associative and distributive properties as the next two
theorems establish.

Theorem 4.49. Let X1, Xo, X3, Xy be sets. If T1 : X1 — Xo, 1o : Xo — X3, and Ty : X3 — X4
are mappings, then
Tyo(TyoTy) = (T30Ty) o Th.
Proof. For any z € X,
(T 0 (T2 0 Th))(x) = T3((T2 0 Th)(2)) = T5(T2(T1(x)))
= (T30 T3)(Ti(z)) = (T30 Ty) o T)(x).
Therefore Ty o (T 0 Ty) = (T3 0 Ty) o Tj. |
Given mappings
Ty X1 = Xo, Th:Xo— X3, T3: X3 — Xy,

it is routine to write the composition as simply 73 o T3 o T} without fear of ambiguity. Whether
we interpret T30T50T) as signifying T30 (Ty0T7) or (T30T,)oT; makes no difference according to
Theorem This idea extends naturally to the composition of any finite number of mappings.

Theorem 4.50. Let Vi, Vs, V3 be vector spaces over F. Let S1,Sy : Vi — Vo and Ty, Ty : Vo — Vi
be mappings, and let ¢ € F. Then

1. (le:Tg)osl :TlosliTgoSl

2. Tho(S1£8s)=T108,£T108, if Ty is linear.

3. (CTl) o) Sl = C(Tl o Sl)

4. Ty o (¢Sy) = ¢(Ty 0 Sy) if T is linear.

Proof.
Proof of Part (1). For any u € V;

(Th +T3) 0 S1)(u) = (T1 + T3)(S1(u)) = Ty (S1(u)) + T2(S1(v))
=(ThoS))(u) + (Tx 051)(u) = (T 0 Sy + Tz 0 S1)(u),

and therefore (T} + 1) 0S; = T1 051 + 15 0.S1. The proof that (17 —15)0S; =T10S5; — Ty 0 .5
is similar.
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Proof of Part (2). For any u € V;
(Ty o (51 +52))(u) = T1((S1 + S2)(u)) = T3 (S1(a)) + Sa(u))
=T1(S1(u)) + T1(S2(u)) = (T} 0 Sy)(u) + (17 0 Sz)(u)
= (T1 05, + 110 5;)(u),
where the third equality obtains from the linearity of T;. Therefore
Tio(S1+S3)=T1085+T105
if T} is linear. The proof that T} o (S — S3) =11 0.S; — T} 0 Sy if T} is linear is similar.

Proof of Part (3). For any u € V;
((cT1) 0 S1)(u) = (cT1)(S1(n)) = cT1(S1(n)) = (11 © 51)(w),
and therefore (¢17) o S1 = ¢(T} o S1).

Proof of Part (4). Suppose that T; is a linear mapping. For any u € V}
(Th 0 (¢51)) () = T1((cS1)(n)) = Ti(cSi(u)) = cT1(Si(w)) = c(T7 0 S1)(u),

where the third equality obtains from the linearity of 7). Therefore T} o (¢S;) = ¢(T 0 Sy) if Ty
is linear. ]

Proposition 4.51. Let Vi, V5, V3 be vector spaces over F. If Ly : Vi — Vo and Ly : Vo — V3
are linear mappings, then the composition Ly o Ly : Vi — V3 is linear.

Proof. For any u,v € V; we have
(Leo Ly)(u+v) = Ly(Lyi(u+v)) = Ly(Ly(u) + L1 (v))
= Ly(L1(w)) + Lo(L1(v)) = (La © L) (u) + (L2 © L1)(v),
and for any ¢ € F and u € V; we have
(Lo Ly)(cu) = Lo(Ly(cu)) = Lo(cLy(u)) = cLa(Ly(u)) = ¢(Lg o Ly)(u).
Therefore Lo o L is linear. [ |

If L:V — V is a linear operator on a vector space V', then Lo L is likewise a linear operator
onV,asis Lo Lo L and so on. A useful notation is to let L? denote Lo L, L? denote Lo Lo L,
and in general

L"=LoLo---0oL
n L’s
for any n € N. We also define LY = Iy, the identity operator on V.

A linear operator II : V — V for which 112 = II is called a projection and is of special
theoretical importance. We have

(II(v)) = (Lo M)(v) = II*(v) = II(v)
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for any v € V.

Example 4.52. Let V' be a vector space, and let IT : V' — V' be a projection.
(a) Show that V' = Nul(II) 4+ Img(II).

(b) Show that Nul(II) N Img(IT) = {0}.

Therefore V' = Nul(II) & Img(II).

Solution.

(a) Let v € V, and let Iy : V. — V be the identity operator on V so that Iy(v) = v. By
Theorem [£.50(2) we have

(v = T(v)) = H(Iy (v) = T(v)) = I((Iv = )(v)) = (Lo (Iy —))(v)
={loly —HoIl)(v) = (IToIy)(v) — (Lo I)(v)
=(Iy(v)) = II*(v) = II(v) — TI(v) = 0,
and so v — II(v) € Nul(II). Noting that II(v) € Img(IT), we readily obtain
v = (v —II(v)) + II(v) € Nul(IT) + Img(II).

Thus V' C Nul(IT) + Img(II), and since the reverse containment follows from the closure
properties of a vector space, we conclude that V' = Nul(II) + Img(IT).

(b) Let v € Nul(IT) N Img(II). Then II(v) = 0 and there exists some u € V such that [I(u) = v.
With these results and the hypothesis I1? = II, we have

0 =I(v) = I(II(u)) = I*(u) = H(u) = v,

implying v € {0} and so Nul(IT) N Img(IT) € {0}. The reverse containment holds
since Nul(II) and Img(II) are subspaces of V' and so must both contain 0. Therefore
Nul(IT) N Img(II) = {0}. |

We found in §4.4 (Theorem that every linear mapping L : V — W has a unique
corresponding matrix [L]sc with respect to chosen bases B and C for the vector spaces V' and
W, respectively. Let U, V', and W be vector spaces with bases A, B, and C, respectively. Let
Ly : U — V have corresponding matrix [L;]| 45 with respect to A and B, and let Ly : V — W
have corresponding matrix [Ls]ge with respect to B and C, so that

[Li(w)]s = [L1]aslu]la  and  [La(v)]e = [Lao]sc[v]s.
Thus for any u € U we have
(L2 o L1)(u)]e = [L2(Li(u))]e = [Lo]sc[L1(w)]s = [Lo]sc[L1]as[ula

Thus we see that the matrix A corresponding to Ly o Ly : U — W with respect to A and C is
given by A = [La|ge[L1]as. That is,

[La o Ly]ac = [Lo]sc[L1]as
and we have proven the following.
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Proposition 4.53. Let Ly : Vi — V5 and Ly : Vo — V3 be linear mappings, and let B; be a basis
for V;. Then
[LQ ° Ll]BlBs = [L2]52B3 [L1]31Bz'



150

4.8 — THE INVERSE OF A MAPPING

Definition 4.54. Let T : X — Y be a mapping. We say T is invertible if there exists a
mapping S : Y — X such that SoT = Ix and T oS = Iy, in which case S is called the inverse
of T and we write S = T~1.

Proposition 4.55. If T : X — Y s an invertible mapping, then
Img(T™ ) =Dom(T) =X and Dom(T ') =Img(T) =Y,
and forallx € X,y €Y,
T)=y & T '(y) ==
Proof. Suppose that 7' : X — Y is invertible, so that there is a mapping 77! : Y — X such
that T7'oT = Ix and T o T~! = Iy. From this it is immediate that
Img(T™) € X =Dom(T) and Img(T)CY = Dom(T1).
Let z € X, so that T'(x) = y for some y € Y. Then
T (y) =T (T(z)) = (T o T)(z) = Ix(z) ==
shows that z € Img(7~1), and so Img(T~!) = X and
T)=y = T '(y)=2

for all z € X.
Next, for any y € Y we have T~1(y) = x for some x € X, whence

T(x)=T(T ' (y) = (ToT )y =Iv(y) =y
shows that y € Img(7"), and so Img(7T) =Y and

Ty =2 = T(x)=y
forally e Y. |

Proposition 4.56. If S: X — Y and T : Y — Z are invertible mappings, then
(ToS)y'=8"1oT™

Proof. Suppose that S : X — Y and T : Y — Z are invertible mappings. Then S and T are
bijective, from which it follows that 7' o S is likewise bijective and so (T'o0 S)™' : Z — X exists.
That is, T o S is invertible.

Let z € Z. Then (T o S)~!(z) = x for some x € X, and by repeated use of Proposition [4.55
we obtain

(ToS)'2)=2 & (ToS)(z)=2 & T(S(x) =2z
& S)=T'2) & z=51T'2)).
& (StoT ™M) =2
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Hence

(T08) " (z) = (ST 0 T7)(2)
for all z € Z, and we conclude that (T'o S)™! =S 1oT1. |

Proposition 4.57. Let V and W be vector spaces over F. If L : V. — W is an invertible linear
mapping, then its inverse L= : W — V is also linear.

Proof. Suppose that L : V — W is an invertible linear mapping, and let L= : W — V be its
inverse. Let wi,wy € W. Then L~!(w;) and L™!(wy) are vectors in V', and by the linearity of
L we obtain

L(L™"(w1) + L™ (wy)) = L(L™(wy)) + L(L ™" (w2))
= (Lo L") (wy) + (Lo L™")(ws)

= Iw(w1) + Iw(Ws) = Wi + Wo,
and hence
Lil(Wl + W2) = Lil(W1> + L71<W2)
by Proposition [4.55]
Next, let w € W and ¢ € F. Then cL~}(w) is a vector in V, and from
L(cL™(w)) = cL(L ' (w)) = ¢(Lo LY (w) = clyy(w) = cw
we obtain
L (ew) = cL ™' (w)
by Proposition 4.55] |

There is a close connection between the idea of an invertible linear mapping and that of an
invertible matrix which the following theorem makes clear.

Theorem 4.58. Let V and W be vector spaces with ordered bases B and C, respectively, and
suppose that dim(V') = dim(W) =n and L € L(V,W). Then L is invertible if and only if [L]sc
1s tnvertible, in which case

Proof. Suppose that L is invertible. Then there exists a mapping L=' : W — V such that
L™'oL = Iy and Lo L' = [y, and since L~! is linear by Proposition it has a corresponding
matrix [L™!ep € F™" with respect to the bases C and B. For all v € V we have
[L(V)]e = [L]sc[v]s;
and for all w € W
[L7H(w)]s = [L™es[W]e.
Now, for all w € W,

((Llse[L™es) [We = [L
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which shows that [L]ge[L™']|cs = I, by Proposition (1) Similarly, for all v € V,
(I Yes[Llse) Vs = L e ([Llsc[V]s) = L™ es[L(V)]e
= [L7HLMV)s = (L o L)()]s = [Iv(v)]5 = [V]3,

and so [L™Y)¢s[L)se = I,. Thus [L™Y¢p is the inverse for [L]sc, which is to say [L]sc is invertible
and

For the converse, suppose that [L]sc is invertible. Then there exists a matrix [L]z> € F™"
such that

[L]ge[Llge = [LlgelLlpe = In-

Let A : W — V be the linear mapping with corresponding matrix [L]z; with respect to C and
B, so that

[A(w)]s = [L]ze[wle
for each w € W. For each w € W we have
(Lo A)(w)le = [L(AW))]e = [Llse[AW)]s = [L]ge[Llgc[Wle = [Wle,

and since the coordinate map w — [w]¢ is an isomorphism—and hence injective—by Theorem
4.11} it follows that (L o A)(w) = w. Next, for each v € V' we have

(Ao L)(V)]s = [ML(V))]s = [Llge[L(V)le = [Llge[Llse[V]s = [V,

and since the coordinate map v + [v]g is an isomorphism it follows that (A o L)(v) = v. Since
LoA=1Iy and Ao L = I, we conclude that A is the inverse of L, and therefore L is invertible.
Finally, since A = L' and [Aleg = [L] ¢, we find that

[L]ge = L es

once again. [

The result [L~Yes = [L]ge given in the theorem reduces the task of finding the inverse of
an invertible linear mapping L € L(V,W) to an exercise in finding the inverse of the matrix
corresponding to L with respect to B and C. Indeed, once a linear mapping’s corresponding
matrix is known, the mapping itself is effectively known.

Corollary 4.59. Let V' be a vector space with ordered basis B, and let L € L(V'). Then L is
invertible if and only if [L]|p is invertible, in which case

[Lls" = [L7']s.
Theorem 4.60. A mapping T : X — Y is invertible if and only if it is a bijection.

Theorem 4.61. Let V' and W be finite-dimensional vector spaces such that dim(V') = dim(W),
and let L -V — W be a linear mapping.

1. If L is injective, then L is invertible.
2. If L is surjective, then L is invertible.



153

Proof.
Proof of Part (1). Suppose that L is injective. By Proposition Nul(L) = {0}, and so

dim(W) = dim(V') = dim(Nul(L)) 4+ dim(Img(L)) = 0 + dim(Img(L)) = dim(Img(L))

by the Rank-Nullity Theorem for Mappings. Now, since Img(L) is a subspace of W and
dim(Img(L)) = dim(W), by Theorem [3.56{(3) Img(L) = W and so L is surjective. Since L is
injective and surjective, it follows by Theorem that L is invertible.

Proof of Part(2). Suppose that L is surjective, so that Img(L) = W. By the Rank-Nullity
Theorem for Mappings

dim(V) = dim(Nul(L)) + dim(Img(L)) = dim(Nul(L)) + dim(W) = dim(Nul(L)) + dim(V),
whence dim(Nul(L)) = 0 and so Nul(L) = {0}. Now, by Proposition we conclude that L is

injective, and therefore L is invertible by Theorem [4.60] [
Proposition 4.62. Let a,ay,...,a, € F". The n X n matrix

A=la a - a,
is invertible if and only if a1, as, ..., a, are linearly independent.

Proof. Suppose that A is invertible. Let L : F* — F" be the linear mapping with associated
matrix A, so that L(x) = Ax for all x € F". Then L is invertible by Theorem [4.58| and so by
Theorem L is bijective and we have Img(L) = F". But by Proposition e also have
Img(L) = Col(A) = Span{ay, ..., a,}, whence

dim(Span{ai,...,a,}) = dim(Img(L)) = dim(F").

Since Span{ay, ..., a,} is a subspace of F" with dimension equal to dim(F"), by Theorem [3.56|3)

we conclude that Span{ay,...,a,} = F", and thus {ay,...,a,} is a basis for F" by Theorem
3.54)(2). That is, the vectors ay, ..., a, are linearly independent.
Next, suppose that ay,...,a, are linearly independent. Then {ay,...,a,} is a basis for F"

by Theorem [3.54(1), so that Span{ay,...,a,} = F". Let L : F* — F" be the linear mapping
given by L(x) = Ax for all x € F". By Proposition @

Img(L) = Col(A) = Span{ay,...,a,} = F",

and thus L is surjective and it follows by Theorem [4.61|2) that L is invertible. Therefore A is
invertible by Theorem [£.58] |

We can employ Proposition to show that a change of basis matrix is always invertible—a
fact already established in §4.5 by quite different means. Let B = (vy,...,v,) and B’ be ordered
bases for a vector space V. By Theorem the change of basis matrix Igp is given by

Lo = il -+ [l | = [ow(v1) - gm(va)].

The coordinate map g : V — F" is an isomorphism by Theorem [£.11] and so in particular
is an injective linear mapping. Thus Nul(¢ps) = {0} by Proposition |4.15] and since the basis
vectors vi,...,Vv, are linearly independent, it follows by Proposition that the column
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vectors @i (vi), ..., e (vy,) of Igg are likewise linearly independent. Therefore Igp is invertible
by Proposition [4.62}

We finish this section with a theorem that establishes that, in a certain sense, there is only
“one kind” of vector space for each dimension value n > 0.

Theorem 4.63. Let V and W be finite-dimensional vector spaces. Then V=W if and only if
dim(V) = dim(W).

Proof. Suppose that V' = W so there exists an isomorphism L : V' — W. Since L is injective,
Nul(L) = {0} by Proposition [4.15 and then
nullity (L) = dim(Nul(L)) = 0.
Since L is surjective, Img(L) = W, and then
rank(L) = dim(Img(L)) = dim(W).
Now, by the Rank-Nullity Theorem for Mappings,
dim(V') = rank(L) + nullity(L) = dim(W) + 0 = dim (W)

as desired.

Now suppose that dim(V') = dim(W) = n. Let B be a basis for V and C a basis for W. By
Theorem the coordinate maps ¢g : V — F" and ¢ : W — F" are isomorphisms. Since ¢¢
is a bijection, by Theorem it is invertible, with the inverse ¢, L. F» — W being a linear
mapping by Proposition Of course ¢, ! is itself invertible with inverse ¢, so that Theorem
m implies that ¢, ' is bijective and hence an isomorphism. Now, by Proposition the
composition ¢, Yo : V — W is a linear mapping that is easily verified to be an isomorphism,
and therefore V = W. |

Example 4.64. Given vector spaces V and W over F, with dim(V) = n and dim(W') = m, by
Theorem we found that £(V, W) = F™*". Therefore

dim (L(V, W)) = dim (F"™*") = mn
by Theorem |
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4.9 — PROPERTIES OF INVERTIBLE OPERATORS AND MATRICES

Linear operators play a central role in the more advanced developments of linear algebra,
and so it will be convenient to collect some of their most important general properties into a
single theorem.

Theorem 4.65 (Invertible Operator Theorem). Let V' be a finite-dimensional vector space,
and let L € L(V'). Then the following statements are equivalent.

1. L 1s invertible.

L 1s an isomorphism.

L 1s injective.

L 1s surjective.

Nul(L) = {0}.

[L]g is invertible for any basis B.
[L]g is invertible for some basis B.

O Gt WD

Proof.
(1) = (2): If L is invertible, then L is bijective by Theorem [4.60, and hence L is an isomorphism
by Definition

(2) = (8): If L is an isomorphism, then of course it must be injective.

(3) = (4): If L:V — V is injective, then L is invertible by Theorem [4.61[(1). By Theorem
it follows that L is bijective, and therefore L is surjective.

(4) = (5): If L : V — V is surjective, then L is invertible by Theorem [4.612). By Theorem [4.60]
it follows that L is bijective, which implies that L is injective. We conclude that Nul(L) = {0}
by Proposition [4.15}

(5) = (6): Suppose that Nul(L) = {0}, and let B be any basis for V. Now, L is injective by
Proposition [4.15 and hence must be invertible by Theorem [4.61)(1). The invertibility of [L]z
now follows from Corollary [4.59,

(6) = (7): This is trivial.
(7) = (1): If [L]p is invertible for some basis B, then L is invertible by Corollary [4.59] |

The following proposition will be improved on in the next chapter, at which point it will be
promoted to a theorem.

Proposition 4.66 (Invertible Matrix Proposition). Let A € F"*" and let La be the linear
operator on F™ having corresponding matriz A with respect to the standard basis £ of F™. Then
the following statements are equivalent.

1. A is invertible.
2. AT is invertible.



156

3. A is row-equivalent to 1,.

4. The row vectors of A are linearly independent.

5. A is column-equivalent to 1,,.

6. The column vectors of A are linearly independent.

7. col-rank(A) = n.

8. row-rank(A) = n.

9. rank(A) = n.
10. The system Ax = b has a unique solution for each b € F™.
11. The system Ax = 0 has only the trivial solution.
12. Nul(A) = {0}.
13. La € L(F") is invertible.

Proof.
(1) = (2): This follows immediately from Proposition [2.32}

(2) = (3): Suppose A" is invertible. Then by Proposition (AT is invertible, where of
course (A7) = A. Now, by Theorem the invertibility of A implies that A is row-equivalent
to I,,.

(8) = (4): Suppose that A is row-equivalent to I,,. Then A is invertible by Theorem SO
by Proposition AT is invertible, and then by Proposition the column vectors of AT
are linearly independent. Since the row vectors of A are the column vectors of AT, we conclude
that the row vectors of A are linearly independent.

(4) = (5): Suppose the row vectors of A are linearly independent. Then the column vectors
of AT are linearly independent, whereupon Proposition implies that AT is invertible.
By Theorem AT is row-equivalent to I,,, which is to say there exist elementary matrices
M, ..., M, such that

M, ---M,M;A"T =1,,

where each left-multiplication by M; is an elementary row operation by Definition [2.15, Taking
the transpose of each side then yields

AM/M, ---M] =1,,

where each right-multiplication by M, is an elementary column operation by Definition [2.15]
Therefore A is column-equivalent to I,,.

(5) = (6): Suppose A is column-equivalent to I,. Then
col-rank(A) = rank(A) = rank(L,) =n

by the definition of rank and Theorem |3.66 which implies that the n column vectors of A are
linearly independent.

(6) = (7): Suppose the column vectors of A are linearly independent. There are n column
vectors, so col-rank(A) = n.
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(7) = (8): Suppose col-rank(A) = n. Then row-rank(A) = n by Theorem [3.64]
(8) = (9): Suppose row-rank(A) = n. By definition rank(A) = row-rank(A) = n.

(9) = (10): Suppose that rank(A) = n. Then col-rank(A) = n, which is to say the dimension
of the span of the column vectors of A is n. Since A has n column vectors in all, it follows that
the column vectors of A are linearly independent, and so by Proposition A is invertible.
Thus A~! exists. Let b € F" be arbitrary. Then A~!b is a solution to the system, for when we
substitute A~!b for x in the equation Ax = b, we obtain

A(A7'b) = (AA b =I,b=b.

This proves the existence of a solution. As for uniqueness, suppose x; and X5 are solutions to
the system, so that Ax; = b and Axy; = b. Now, for ¢ € {1, 2},

Ax;=b = A'Ax)=A""D = (A 'A)x;,=A"'b = x,=A"'b.
That is, x; = X2 = A~'b, which proves the uniqueness of a solution.

(10) = (11): Suppose that the system Ax = b has a unique solution for each b € F". Then if
we choose b = 0, it follows that the system Ax = 0 has a unique solution, and clearly that
solution must be the trivial solution O.

(11) = (12): If Ax = 0 admits only the trivial solution, then
Nul(A) = {x € F": Ax =0} = {0}
obtains immediately.
(12) = (13): Suppose Nul(A) = {0}, and suppose x € F" is such that La(x) = 0. Since
La(x)=0 = Ax=0 = xe€Nul(A) = x=0,

it follows that Nul(Ls) = {0}. Therefore La must be invertible by the Invertible Operator
Theorem.

(18) = (1): Suppose that L € L(F") is invertible. Then [LA]¢ is invertible by Corollary
and since [Lale = A we conclude that A is invertible. |

With the help of the Invertible Matrix Proposition we now prove that any square matrix
with either a left-inverse or a right-inverse must be invertible,

Proposition 4.67. Let A € F"*". Then the following statements are equivalent:

1. A is invertible.
2. There exists some D € F™*" such that AD =1,,.
3. There exists some C € F™*™ such that CA =1,,.
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Proof.
(1) = (2): Suppose that A is invertible. Then by definition there exists some D € F"*" such
that AD = DA =1,,.

(2) = (1): Suppose that

D=[d, --- d,|]eF"
is such that AD =1I,,. If a;,...,a, € F" are such that a],...,a' are the row vectors for A,
then we have
aj
[dl ' dn} - Ina
a,
and thus
ald,— b =g (4.27)
Co, ifi A '
Now, let
b
b=|:|el"
bn

be arbitrary and consider the system Ax = b. Choose

i=1
Then we obtain
aj aj x aj (>, bidy) >iey bi(al dy) by
Ax=| ! |x= : = : = : =|:]1=Db

. . )

a, a, X a, (i, bid;) > bi(a, d;) by,

where the penultimate equality follows from . This shows that Ax = b has a solution for
any b € F".

Let La € L(F") be the linear operator with corresponding matrix A with respect to the
standard basis £. For each b € F" there exists some x € F" such that Ax = b, and hence
La(x) = b. This shows that La is surjective, so La is invertible by the Invertible Operator
Theorem, and hence A is invertible by the Invertible Matrix Proposition.

(1) = (8): Suppose that A is invertible. Then by definition there exists some C € F"*" such
that CA = AC =1,.

(3) = (1): Suppose there exists some C € F"*" such that CA =1,,. Then A is a right-inverse
for C, and by the equivalency of parts (1) and (2) it follows that C is invertible. Thus C~!
exists (and is invertible), and since

CA=1I, = CCA)=C'I, = (C'C)A=C"! = A=C,
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we conclude that A is invertible. [ |

An immediate application of Proposition provides something of a converse to Theorem
2.26]

Proposition 4.68. Let A, B € F™*". If AB is invertible, then A and B are invertible.

Proof. Suppose that AB is invertible. Then there exists some D € F**" such that (AB)D =1,
and so by associativity of matrix multiplication we obtain A(BD) = I,,. Therefore A is invertible
by Proposition [4.67]

Now, the invertibility of A means that A~! exists, and since A~! and AB are invertible, by
Theorem A~!(AB) is invertible. But

A'(AB)=(A'A)B=1,B =B,
and therefore B is invertible. [ |

The following proposition (and its corollary) could have been proved at the end of the
previous chapter and has wide application in the calculus of manifolds, among other fields.

Proposition 4.69. For A € F™" et 1 < k < min{m,n}. Then there is an invertible
(k+1) x (k+ 1) submatriz of A if and only if rank(A) > k + 1.

Proof. Suppose A = [a; --- a,] has an invertible (k+ 1) x (k + 1) submatrix. If the submatrix
is formed by the entries that are in rows iy, ...,ix; and columns jy,...,Jrr1 of A, and we
designate the ordered index sets a« = (iy,...,i,y1) and 5 = (J1,...,Jks+1), then we may denote
the submatrix by Al«, 5]. Let A[-, 3] denote the m x (k + 1) submatrix formed by the entries
in rows 1,...,m (i.e. all the rows) and columns ji, ..., jx+1, which is to say

Al Bl =[a;, - a,,].

Then Alq, 5] is a submatrix of A[-, ], and in particular the k + 1 row vectors of Ala, 5] are
row vectors of A[-, 5]. Now, since A[a, (] is invertible, by the Invertible Matrix Proposition
we have rank(Ala, 8]) = k + 1. Since rank(Alw, 8]) equals the dimension of the row space of
Ala, ], it follows that the k + 1 row vectors of A, 3] are linearly independent, and therefore
at least k + 1 row vectors of A[-, 3] are linearly independent. That is, the dimension of the row
space of A[-, 3] is at least k + 1, and then we find that

col-rank (A[-, 4]) = row-rank (A[-, f]) > k + 1.
In fact, since A[-, 5] has precisely k + 1 column vectors we must have
col—rank(A[- , B]) =k+1,

which is to say the k£ + 1 column vectors of A[-, 3] are linearly independent. However, the
column vectors of A[-, f] are also column vectors of A itself, and so now we have

rank(A) = col-rank(A) > k+1 > k.
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For the converse, suppose that rank(A) > k. Then at least k41 column vectors a;,, ..., a;,
of A are linearly independent, and with § defined as before we construct the n x (k+1) submatrix
Al-,B]. Since col-rank(A[-, f]) = k + 1, it follows that row-rank(A[-,3]) = k + 1 also. Thus
there are k + 1 linearly independent row vectors in A[-, 5], which we number iy, ... g ;. With
« defined as before, we obtain the (k 4+ 1) x (k + 1) submatrix A«, 5] that has k + 1 linearly
independent row vectors. Now,

rank(A[a, ﬁ]) = row—rank(A[a, B]) =k+1,
and the Invertible Matrix Proposition implies that A[a, (] is invertible. |

Applying Proposition in the case when m = min{m, n} and k = m —1, then we conclude
that rank(A) > m iff some m x m submatrix of A is invertible, and thus (since the rank of a
matrix cannot exceed its smaller dimension) rank(A) = m iff some m x m submatrix of A is
invertible. A similar conclusion obtains if n = min{m, n}. Defining a matrix A € F"*" to have
full rank if rank(A) = min{m,n} (i.e. A has the greatest possible rank), we have proved the
following.

Corollary 4.70. For A € F"™*" let k = min{m,n}. Then A has full rank if and only if A has
an tnvertible k X k submatrix.

A good exercise is to prove Corollary from established principles, and then use it to
prove Proposition [£.68 Is the argument any easier than that above?

Proposition 4.71. Let V and W be finite-dimensional vector spaces over F with bases B and
C, let L € L(V,W) be a linear mapping, and let [L] be its BC-matriz.

1. If L is injective, then [L] has full rank.
2. If [L] has full rank and dim(V') < dim(W), then L is injective.

Proof.

Proof of Part (1). Set n = dim(V') and m = dim(W), so that [L] € F™*". Suppose that L is
injective. Proposition implies that Nul(L) = {0}, and thus Nul([L]) = {0} as well. This
gives nullity([L]) = 0, and so rank([L]) = n by the Rank-Nullity Theorem for Matrices. Since n
is a dimension of [L], it must in fact be the smaller dimension (see remark below) and so we
conclude that [L] has full rank.

Proof of Part (2). For the converse, suppose that L is not injective. Then Nul(L) # {0}
implies Nul([L]) # {0}, so that nullity([L]) > 0 and therefore rank([L]) < n by the Rank-Nullity
Theorem for Matrices. If n = dim (V') < dim(W) = m, then it follows that [L] does not have
full rank and we are done. u

Remark. In the proof of the first part of Proposition [£.71] note that L : V' — L(V) is an
isomorphism, which is to say V' = L(V), and so dim(L(V )) = dim(V') = n by Theorem 4.63|
But L(V) is a vector subspace of W, and so n = dim(L(V')) < dim(W) = m by Theorem [3.56]
In short, if L € L(V, W) is injective, then dim(V') < dim(W). A similar truth, left as a problem,
states that if L € £(V, W) is surjective then dim (V') > dim(W).
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DETERMINANTS

5.1 — DETERMINANTS OF LOwW ORDER

Definition 5.1. The 1 X 1 determinant function det; : F*! — F is given by
dety([a]) = a

for each [a] € F**1.
The 2 X 2 determinant function dety : F2*%2 — F is given by

det, q‘c’ ZD — ad — be.

Generally the scalar det,(A) is called the determinant of the matrix A, and may also be
denoted more simply by det(A) or |A].

The 1 x 1 determinant function has little practical value and tends to arise only in inductive
arguments as in the proof of Theorem [5.4 The 2 x 2 determinant function, on the other
hand, is highly important, and so it will be the focus of study for the remainder of this section.
Henceforth we will denote dets(A) simply as det(A).
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5.2 — DETERMINANTS OF ARBITRARY ORDER

The general definition we will give here for the determinant of an n X n matrix is recursive
in nature. That is, for n > 2, the determinant of an n X n matrix will be defined in terms of
determinants of (n — 1) x (n — 1) matrices. Thus determinants of n X n matrices are ultimately
defined in terms of determinants of 1 x 1 matrices, and since the determinant of a 1 x 1 matrix
is defined to equal the sole scalar entry of the matrix, we can see that the definition rests on a
firm foundation.

Before stating the definition a bit of notation needs to be established. If A = [a;;] is an
n X n matrix, then we define A;; to be the submatrix that results when the ith row and jth
column of A are deleted. That is,

an T ai(j-1) Qa1(j+1) T A1n
A= -1 -0 AG-1)@E-1)  W-nE+y) T Aa=n |
’ Ae+nr - AG+1)(G-1)  AE+D)G+1) 0 A@+)n
[ dn1 " An(j-1) An(j+1) - Ann

We now have what we need to give the general definition for the determinant function.

Definition 5.2. Let n > 2. The n X n determinant function det,, : F"*" — F is given by

n

det,,(A) =) (—1)"ay; det,_1(Ay;) (5.1)

=1

for each n x n matriz A with entries in F. The scalar det,,(A) is called an n X n determinant.

As is our custom we will take the field F to be R unless otherwise indicated. Often we will
write det,, (A) as simply det(A). Other symbols for the determinant of A are

aix - Qi aipr - QGin
|A[, det el , and
Qp1  * Qnn Ap1  *+ Qpn
Example 5.3. Given that
-2 3 -1
A= 0 2 5],
0 —6 4
evaluate det(A).
Solution. We have
2 5 05 0 2
o\l )12 C\143/_
der(d) = (-1 | g 3|+ g 3] cen )y g
2 5 5 0 2
'__2‘—6 4‘_3‘0 4‘ ‘o —6'
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= —2[(2)(4) = (5)(=6)] = 3[(0)(4) = (5)(0)] = [(0)(=6) — (2)(0)]
= 76,

using Definitions [5.2) and [5.1] |

It is frequently convenient to regard det, : F"*" — F as being a function of the column
vectors of a matrix A € F"*". Thus, if

A:[a1 an},
where a; € F” is a column vector for each 1 < j < n, then we define
det,(a,...,a,) = detn([al e an})

so that in fact we have det,, : H?:l " — F. This leads to no ambiguity since there is a natural
isomorphism between the vector spaces

F”X”:{[xl Xn} : xkEIF"forlngn}
and

HF”:{(xl,...,xn) cx € F" for 1 <k <n}
=1

that enables us to identify, in particular, the column vectors of any matrix A = [a;;],, in F™*"
with a unique n-tuple (ay,...,a,) of vectors in F”. We use this natural identification to express
certain properties of determinants.

Theorem 5.4. For all n € N, the determinant function det, : F**" — F has the following
properties, where all vectors represent column vectors.

DP1. Multilinearity. For any 1 < j <mn, ifa; =u+ v then
det,(aj,...,u+v,...,a,) =det,(a,...,u,...,a,) +det,(a,...,v,...,a,),
and if a; = zu then
det,(ay,...,zu,...,a,) = xdet,(a;,...,u,...,a,).

DP2. Alternating. For any 1 < j < k <n,

det,(as,...,a;,...,a,...,a,) = —det,(ay,...,a,...,8;,...,a,).
| — [
j k

DP3. Normalization.
det, (L,) = 1.

DP4. If A = [a; --- a,] with a; = a;, for some j # k, then det, (A) = 0.
DP5. For any x € F and j # k,

det,(ai,...,a;,...,a,) =det,(ai,...,a; + zay,...,a,).
DP6. For any 1 < j <mn, if a; = 0 then
det,(a,...,0,...,a,) = 0.
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Proof.
Proof of DP1. Given any u,v € F, we have [u + v] € F'*! with

det([u + v]) = u + v = det([u]) + det([v])

by Definition [5.I} Thus DP1 holds in the case when n = 1. Suppose that DP1 holds for some
arbitrary n € N. Let

A=[ay] = [ay - app] € FOHDxHD),

fix k € {1,...,n+ 1}, and suppose a;, = u+ v. For each 1 < j < n+ 1 define

A2
r . n
a; = : e F",
A(n+1);
and also
Uo V2
u =\ : and Vv =
Un+1 Un+1
By Definition [5.2
n+1 n+1
det(A) = Z(_l)l—walj det(Alj) = Z(_1)1+]alj det(allv s 73-;'—17 a;‘-i—la s aan-‘rl)a (52)
j=1 j=1
where it’s understood that
det(al,...,aj j,a%,,, ..., a,11) = det(ay, ..., a,11)
if j =1, and
det(a),...,aj j,aj,...,a,41) = det(al,...,a,)
if j=n+1.
Now, if j < k, then
det(Ay;) = det(a),...,a; j,a),,,...,a),...,a,,)
=det(a),...,a) ja;,,...,u+Vv, .. a )
=det(...,a) j,aj,,...,u,...) +det(...,a ,af,,...,v,...)

by the inductive hypothesis, since A;; is an n x n matrix. Similarly, if 7 > k then

o / / / / /
det(Aj;) = det(al,...,a,...,a5_j,a5,,,...,a,,)
o / / / / / /
=det(a},...,u' +Vv',...;a; a4 )
. / / / / / ’
=det(...,u,...,;a) ,a),,,...)+det(..., v, ... & &)

These results, together with equation (5.2), yields
k—1
det(A) = Z(—1)1+ja1j det(al, ..., a

/ / / / /
Ay, W VA )

J=1
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+ (_1)1+ka1k det(alla - 7a;c—17 a;c—&-l? s 7a;L+1)
n+1
+ Z (—1)'"ay;det(al,...,u' +v',... a)_j,a),,...,a )
j=k+1
k—1
= (—)'"ay[det(...,a)_y,a’, ... 0, ) +det(...,a)_y,al,, ..V, )]
j=1
+(_1)1+k(u1_'_Ul)det(a/la"-7a;cflaa;g+l7"'7a;1+1)
n+1
+ Z 1)'"ay;[det(..., 0, .o a)_a) ) +det(.. v, Al Al )
j=k+1

where we use the fact that a;p = u; + v1. Observing that
det(allv ce 7a;c—17 a;c—&-l? te 7a;1+1) = det(Alkz)a

we finally obtain

k-
det(A Z D' ay;det(...al_y, @, ...,0, ) 4 (=1) uy det(Ayy)
j=1
+ .
+ Z )" ay;det(..., a0, &) a),,,...)
Jj=k+1
k-1
+ Z(—l)”%u det(...,a%_j,a’ ..., v, )+ (=1)""Fv det(Ay)
j=1
n+1
+ Z (—1)'"ay;det(...,v,... a4, a),,...)
j=k+1
=det(ay,...,u,...,a,41) +det(ay,...,v,...,a,41)
That is,
det(a,...,u+v,...,a,41) =det(as,...,u,...,a,41) +det(ay,...,v,...,a,41),

and so the first multilinearity property holds for all n > 1 by induction.

We now prove the second multilinearity property. We have det([za]) = za = x det([a]) for
any x € F and [a] € F**!, so the property holds in the case when n = 1. Suppose it holds for
some arbitrary n € N. For A € F+Dx(nHl) ke {1, n+ 1} and 2 € F we have

k—1
_ 147 / ! / / !
det(ay,...,zay,...,a,41) = g (=1) May det(al,...,a; ,a;,,..., 04, ..., &, )
i=1
1+k / / / /
+ (1) zar, det(al, ..., a;_q,a) 4,...,8,,4)
n+1
145 ! / ! l l
+ E (=1)ay;det(ay, ... zay, ..., a5, ,...,a&, )

j=k+1
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Since the determinants in the summations are n x n, we use the inductive hypothesis to obtain

k—1
_ 147 / ! / ! !
det(ay,...,zay,...,a,41) = g (=1) Vzayjdet(al, ..., a; a4, &, ..., &, )
J=1
1+k / / / /
+(=1) ray det(ay, ... A,y @, &)
n+1
1475 ! ! ! l l
+ E (=1)Vray;det(al, ... ay, ..., j,a), ,...,a,,),
j=k+1
and hence
k—1
_ 1+5 / / / / /
det(ay,...,zay,...,a,41) = (=1) May det(al,...,a) ,a; 4,...,a, ..., &)
Jj=1
1+k / / / /
+(_1> alkdet(ala"'7ak—1’ak+17'-'aan+1)
n+1
1+j5 / / / / /
+ § (_1> aljdet(alu"'7ak7'-waj—17aj+17"'7an+1>
j=k+1
:xdet(al,...,an+1).

Therefore the second multilinearity property holds for all n > 1 by induction.

Proof of DP2. This is done using induction and careful bookkeeping much as with the proofs of
the previous two properties, and so is left as a problem.

Proof of DP3. Certainly det([1]) = 1, so normalization holds when n = 1. Suppose it holds for
some n € N. Let I = I,,,;, with ij-entry denoted by e;;. We have e;; = 1 and e;; = 0 for all
2<j7<n+1,andso

det(I) = nzﬂ(—l)l*jelj det(Iy;) = det(I1;) = det(I,) = 1.

J=1

Therefore the normalization property holds for all n € N by induction.
Proof of DPJ. Let A € F**" and fix 1 < j < k < n. By the alternating property DP2,
det(A) =det(ay,...,a,,...,a,...,a,) = —det(ay,...,a,...,a;,...,a,),
and so if a; = a; we obtain
det(A) = —det(ay,...,a;,...,a;,...,a,) = —det(A).
That is, 2det(A) = 0, and therefore det(A) = 0.

Proof of DP5. Let A € F™" and fix 1 < j, k <n with j # k. For any x € F we have by DP1,

det(al,...,aj+:cak,...,an):det(al,...,aj,...,an)—i—det(al,...,@,...,an)
j J
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=det(ay,...,a;,...,a,) —l—:Edet(al,...,%,...,an)
J
The matrix
[al PR a—k ... an}
{—
J
has jth and kth column both equal to aj, so that

det(ay,...,ag,...,a,) =0
{—
J
by DP4, and we obtain
det(ay,...,a; + zag,...,a,) =det(ay,...,a;,...,a,)

as desired.

Proof of DP6. Let A =[a; --- 0 --- a,], so a; = 0 for some 1 < j <n. By DPI,

det(A) = det(ay,...,0+0,...,a,)
= det(ay, . . .,an)+det(a1,...,0,...,an)
= det(A) + det(A)
which immediately implies that det(A) = 0. [

Proposition 5.5. If A € F"*" is an upper-triangular or lower-triangular matrix, then
i=1

Proof. The statement of the proposition is vacuously true in the case when n = 1. Let n € N
be arbitrary and suppose whenever A = [a;;],, is an upper-triangular or lower-triangular matrix,
then det(A) = aj1a92 -« + app.

Suppose that A € F"*" is an upper-triangular matrix, so that A = [a;;] such that a;; =0
whenever ¢ > j. Now, for all 2 < j < n + 1 the matrix A;; has 0 in its first column, so that
det(Aq;) = 0 by DP6 and we obtain

n+1
det(A) = Z(—1)1+ja1j det(A1j> = a1 det(AH). (53)
j=1
Now, Aj; is an n X n upper-triangular matrix,
gz - A2(n+1)
0 A1)ty
and so by the inductive hypothesis det(Aq1) = ag2 - - - a(nt1)(n+1)- Then from (5.3)) we conclude
that
det(A) = ai1a22 - - - A(nt1)(n1)-
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Next, suppose that A is a lower-triangular matrix, so that a;; = 0 whenever ¢ < j. Then
a;; = 0 for all 2 < j <n, and since Ay is an n x n lower-triangular matrix, we once again we
obtain

det(A) = a1y det(Aqy) = a11a22 - - Ans1)(nt1)
as desired. [ |

Lemma 5.6. Define the function det], : F"*" — F by

n

detr,(A) =) (=1)"a; det;,_,(Ay), (5.4)

=1

with det’([a]) = a in particular. Then det, (A) = det,(A) for alln € N and A € F™*".

Proof. First, it can be shown via analogous arguments that the function det!, possesses the
same six properties listed in Theorem that det,, possesses. Also Proposition [5.5] applies to
det] , with the proof being symmetric to the one given for det,,.

Fix n € N and let A € F"*". Recall the elementary row and column operations R1, R2,
C1, and C2 from Definition 2.15] If A’ is obtained from A by an application of C1, then by
Proposition 2.17|(1) and DP5 we have det(A) = det(A’); and if A’ is obtained from A by an
application of C2, then det(A) = — det(A’) by Proposition [2.142) and DP2. By Proposition
and the particulars of its proof, row operations R1 and R2 may be applied to AT to obtain
an upper-triangular matrix U, which corresponds to employing a succession of Cl1 and C2
operations to A to obtain a lower-triangular matrix

(- 0

gnl e gnn
that is, L = [(;;],, with ¢;; = 0 for ¢ < j. If a total of k C2 operations are performed in doing
this, then det(A) = (—1)* det(L). Now
by Proposition [5.5

On the other hand, because Theorem [5.4] applies to det’, we have det’(A) = (—1)* det’(L).
And then because Proposition also applies to det’, we easily obtain
det’(A) = (=1)*011lo - - - £,,,, = det(A)

as claimed. |
Theorem 5.7. For any A € F™*" det, (A) = det,(A").

Proof. Let A € F"*". Let a; denote the ij-entry for AT. Since a/; = a;1 and (A7) = (A1) "
for all j,

n n

det, (A7) = (=1)"af;det, 1 [(AT);] = (1) ay det,_1[(Aj1)"].

J=1 Jj=1
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Now, by Lemma [5.6| we have det,,_1[(A;;)"] = det],_;[(A;1)"] so that
det,,(AT) =3 (=1)"ayy det],_;[(A;1)7] = det/,(A),
=1
and therefore
det,(A") = det,(A)

by another application of Lemma |5.6| |

Lemma 5.8. For alln € N and 1 < 5 <n, define det;ljj P T by

det{n,j(A) = Z(_l)iﬂazj det;L—l,j(Aij)a

i=1
with det} y([a]) = a in particular. Then, for every n € N, det;, ;(A) = det),(A) for all1 < j <n
and A € F™*".

Proof. The conclusion is trivially true in the case when n = 1, so suppose the conclusion is
true for some n € N. Since det/,,,, = det],, by definition, consider det,, ,, ; for some j > 2.

)

Let A = [a;---a,,] € FO+HDX(HD) and et
B = [aj ERE < ¥ R K- VRS an+1} .

Since Theorem and in particular DP2—applies to det;, ., we have

n+1
dety, 1 (A) = —det),,,(B) = = Y (1) ay det},(Ba), (5.5)
i=1
where
B = [3/2 oAy A A, e a/n-i—l] )

each aj, representing a; with its ith component deleted. A succession of j — 2 transpositions
of the column vectors of B;; will bring a) to the position of the column without altering the
relative positions of the other vectors:

[ap - Ay Al o A,

This matrix is precisely A;;, and since A;; obtains from B;; via j — 2 column transpositions, by
DP2 and the inductive hypothesis we have

det;, (Bi1) = (—1)’ % det;, (Aj;) = (—1) > det;, ;(Ay).
Substituting this result into (5.5 yields

n+1 n+1
dety,1(A) = — Z(—l)iﬂ(—l)j_%ij det;,j(Aij) = Z(—I)Hjaz‘j det;z,j(Aij) = det;z+1,j(A)
i=1 =1
as desired. Therefore det,, ,, ; = det),, forall 1 <j <n+1. |
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Lemma 5.9. For alln € N and 1 <i <n, define det,,; : F"*" — F by

n

detm(A) = Z(—l)i+j(1ij detn_l,i(Aij),

Jj=1

with dety 1 ([a]) = a in particular. Then, for every n € N, det,, ;(A) = det,(A) for all1 <i<n
and A € F™*™.

Proof. The conclusion is trivially true in the case when n = 1, so suppose the conclusion is
true for some n € N. Since det,, 111 = det, ;1 by definition, consider det,,;; for some ¢ > 2. Let
A € F+D)x(n+1) We have

dety1(A) = det, 1 (A7) =det], (A7) = det,, ;(AT) (5.6)
by Theorem , Lemma , and Lemma , respectively. Letting AT = B = [b;i],, where
bjr = ax;, we have

n+1

det;L-Fl,’i(AT) = det;ﬁ-l,i(B) = Z(_l)jJribji det{n,i(Bji)‘ (5.7)

Jj=1

However, since B;; = (AT);; = (A;;)T, it follows that
det;m(Bﬂ) = det;m ((A”)T) = det; ((A”)T) = detn ((AU)T) = detn(A”) = detn,i(Aij),

making use of Lemma [5.8] Lemma [5.6, Theorem [5.7, and the inductive hypothesis, in turn.
This result, along with b;; = a;; and (5.6)), turns (5.7)) into

n+1
detn+1 (A) = Z(—l)”jaij dethi(Aij),
j=1
and therefore det,,1(A) = det,11,(A) as desired. [

All of the functions det,; and det;w- are rightly called determinant functions; however
Lemmas [5.6] and taken together, show that

det,; = det, = det] = det;%7

for any n € N and 1 < 4,57 < n. That is, all of the determinant functions defined thus far in this
section turn out to be the same function, even though they are given by different formulas! For
each 1, the formula given for det,, ;(A) is called “expansion of the determinant of A along the
ith row”; and for each j, the formula given for det!, ;(A) is called “expansion of the determinant
of A along the jth column.” Since all of the functlons det,,; and det;, nj are the same, and since
in practice it is not generally necessary or desirable to specify which way the determinant of a
square matrix is being expanded, from now on we shall denote all expansions of the determinant
of A by the symbol det,,(A) or det(A). We summarize as follows.
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Definition 5.10. Given A € F™*", the sum

det,,(A) =) (—1)"ay; det,_1(Aj))
j=1
is called the expansion of the determinant of A along the ith row, and the sum

detn(A) = Z(—l)”jaij detn_l(Azj)
i=1
is called the expansion of the determinant of A along the jth column.

Given column vectors ay, ..., a,, we define
aj
det,(a,...,a’) = det, : ;
a,
that is, we take det,(a/,...,a') to be the determinant of the matrix with row wvectors
a/,...,a). (It is important to bear in mind that, notational conventions aside, det,, is by

definition strictly a function with domain F"*"—which is to say the allowed “inputs” are n X n
matrices, and not n-tuples of vectors in F".) In light of Theorem we readily obtain the
following result.

Proposition 5.11. The properties DP1 — DPG6 given in Theorem remain valid if ay, ..., a,
represent the row vectors of a matrix A € F™*™ instead of the column vectors.

Proof. The proof for DP1 should suffice to convey the general strategy. Given row vectors
a,...,u+v,...,a,, we have

- - - T
a; a;
det,(aj,...,u+v,... a,) = det, u—i—v = det,, u%h—v
| a, | | a |
= det, ([a] u' +v' a)])
= det, ([a] u' a, )+ det, ([a] v’ all)
= det,, ( [a] u’ a, | T) + det,, ( [a] vl a,| T)

= det,, u + det,, A
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by our notational convention and repeated use of Theorem [5.7] n

Example 5.12. Evaluate the determinant

|

T Gt
o O
oo

Solution. Since the second column of the determinant has two zero entries, our labors will be
lessened if we expand the determinant along the second column:

30 -6
24 7= T e ol o)) )
1 10 1 10 -2 7
1 0 10
_ 4|3 7O = 4[(3)(10) — (=6)(1)] = 144
1 10 '
Expanding along any other column or row will yield the same result. |

Example 5.13. Given that
3 1 =5 9
-6 4 10 —18
A= 0o -2 8 =7/’
5 1 -1 3

evaluate det(A).

Solution. Applying DP5 together with Proposition [5.11] we add twice the first row of the
determinant to the second row, obtaining a new determinant having the same value as the old
one:

3 1 -5 9 3 1 -5 9
126 4 10 —18) smimen |0 6 00
det(A)=1 g o § 7|=—— |0 2 8§ 7
5 1 -1 3 5 1 -1 3

Now we find it convenient to expand the determinant of A along the second row, since that row
contains three zero entries:

3 -5 9 3 -5 9
det(A) = (—-1)*"*(6)=|0 8 —=7|=6|0 8 -7
5 -1 3 5 -1 3

Expanding the 3 x 3 determinant along the first column, we finally obtain

8 —7 -5 9
8 =7

-1 3
=6[3(17) + 5(—37)] = —804

and we’re done. [ |

det(A):6(3‘ +5
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Example 5.14. The n x n Vandermonde determinant is

1 €1 e x?il
. 1 zy -+ a2t

V,, = det ([xf 1]an) = 2
1 Tn e I'Z_l

The claim is that

Vipr = ] (@ — =) (5.8)

1<i<j<n+1
for all n > 1. This clearly holds when n =1 and n = 2:
oy 1 xi
Vo = ‘ | oy | = P20 and V3=1|1 x xg = (x9 — x1)(x3 — x1) (T3 — T2).
1 x3 a3
Let n > 1 be arbitrary, and suppose that is true. Now, by DP5,
1 oz - 2t 1 0 0
Vige = Lom xSH —T1Cj+Cj+1Cj41 L :USH _ i
forj=n+1,...,1 :
I wpyo - Jfﬂé I o —m -+ 93215 — T1Tp 49

Expanding the determinant along the first row and then employing Proposition to DP1
yields

To — X1 T3 — 11T e xSH — x12y
Vn+2 - .
Tpy2 — 21 55}2#2 — L1Tnt2 ng — T1Tp 49
1z - b
= (v2 — 1)+ (Tpyo — 1)
I Zppe o @y,

The last determinant is an (n+ 1) x (n+ 1) Vandermonde determinant, and so by (5.8]) we have

2<i<j<n+2

1 Lo x'g

n
1 :'L"I’L-"-Q o e :L‘n+2
Hence

Vi = (12 — 1) -+ (Tny2 — 11) H () — @) = H (zj — @),

2<i<j<n+2 1<i<j<n+2

and so by the principle of induction we conclude that (5.8]) holds for all n > 1. |
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5.3 — APPLICATIONS OF DETERMINANTS

As a first application, we establish a few results that will enable us to significantly extend
the Invertible Matrix Proposition of §4.9.

Proposition 5.15. Let A =[a; --- a,] € F*™™. The vectors ay, ..., a, are linearly dependent
if and only if det(A) = 0.

Proof. Suppose that ai,...,a, are linearly dependent, so there exist ¢y, ..., ¢, € F such that
n
Z c;a; = O,
j=1

and ¢ # 0 for some 1 < k < n. Now
C.
crap+ Y ca =0 = a,=—Y —“Zaj
om0 > s 50
J#k J#k
and so

det(A) =det(ay,...,a,...,a,) = det(al,...,—zﬁaj,...,an>
7k
C .
:—Z—Jdet(al,...,aj,...,an) (5.9)
ik
by the multilinearity properties of the determinant function. By DP4 we have

det(as,..., a; ,...,a,) =0
—~—

kth col.
for each 1 < 7 < n such that j # k, and so from (/5.9)) we obtain det(A) = 0.
For the converse, suppose that ai,...,a, are linearly independent, so col-rank(A) = n.

Recall the elementary row and column operations R1, R2, C1, and C2 from Definition [2.15] The
proof of Theorem [3.64| shows that A is equivalent via the operations R1, R2, C1, and C2 to a
diagonal matrix

by -+ 0

and since by Theorem [3.60]
col-rank(B) = col-rank(A) = n,

it follows that b,;; # 0 for all 1 < j < n.
Now, if p is the number of R2 and C2 operations performed (which by Propositions [2.16(2)

and [2.17|(2) correspond to swapping rows and columns) in passing from A to B, then by DP2
and [5.4{(5), together with Proposition [5.11] we have

det(A) = (—1)7 det(B).
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Of course, B is an upper-triangular matrix, and so
det(A) = (—1)pb11622 s bnn # 0
by Proposition [5.5] |

Proposition 5.16. A € F"*" is invertible if and only if det,(A) # 0.

Proof. By the Invertible Matrix Proposition (Proposition |4.66)),

A= [al e an}
is invertible if and only if a,...,a, are linearly independent, and by Proposition the
vectors ay, ..., a, are linearly independent if and only if det, (A) # 0. The conclusion is now
self-evident. |

We now improve on the Invertible Matrix Proposition given in §4.9 to obtain what we shall
call the Invertible Matrix Theorem, incorporating also the results of Proposition [4.67] as well as
observing that nullity(A) = 0 is equivalent to Nul(A) = {0}.

Theorem 5.17 (Invertible Matrix Theorem). Let A € F"*", and let Lo be the linear
operator on F" having corresponding matriz A with respect to the standard basis € of F™. Then
the following statements are equivalent.

1. A s invertible.
. AT is invertible.
. A is row-equivalent to 1.
. The row vectors of A are linearly independent.
. A is column-equivalent to I,,.
. The column vectors of A are linearly independent.
. col-rank(A) = n.
. row-rank(A) = n.

9. rank(A) = n.
10. The system Ax = b has a unique solution for each b € F™.
11. The system Ax = 0 has only the trivial solution.
12. Nul(A) = {0}.
13. nullity(A) = 0.
14. La € L(F") is invertible.
15. There exists some D € F™*" such that AD =1,,.
16. There exists some C € F™*" such that CA =1,,.
17. det,(A) # 0.

O ~J O O i~ W o

Determinants can be applied to find the solution to a nonhomogeneous system of n equations
with n unknowns, provided that a unique solution exists.

Theorem 5.18 (Cramer’s Rule). Let ay,...,a, € F" such that det,(ay,...,a,) # 0. If
b e F" and x4,...,x, are scalars such that

ria; + -+ + r,a, = b, (5.10)
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then

- detn(al, e ,aj_l,b,aj+1, e ,an)
=

det,(ay,...,a,)
foreach 1 < j <n.

Proof. Suppose that b € F”. Since det,(ai,...,a,) # 0 it follows from the Invertible Matrix
Theorem that there exist unique scalars z1, . . . , z, such that equation ({5.10|) holds. Fix 1 < j < n.
Letting

det,(as,...,b,...,a,) =det,(as,...,aj_1,b,a;11,...,a,)

for brevity, we obtain

n
det,(ai,...,b,... a,) :detn(al,...,Zxkak,...,an)
k=1

= apdety(ar,... ..., a,) (5.11)
k=1

by DP1. Now, for each k # j we have det,(ai,...,a,...,a,) = 0 by DP4, since both the jth

and kth column of the matrix
[al . e ak: ) anj|
~—
7th col.

is equal to a;. Hence from ([5.11)) comes

det,(as,...,b,...,a,) =x;det,(as,..., a; ,...,a,) =xz;det,(a,...,a,),
jth col.

and therefore
_dety(ai,...,b,...,a,)

7= det,(a,...,a,)
as desired. ]
If we let
A:[al ag - an}
and
T
X = 9
Tn

then Cramer’s Rule may be given as

detn(al, ceey A4, b, Aty ,an)
det, (A)

Ax=b = T; =

for each 1 < j <mn, so long as det(A) # 0.
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Example 5.19. Solve the system

20 — y+ z=1
x4+ 3y —22=0
dr — 3y + 2=2

using Cramer’s Rule.

Solution. Here Ax = b with

2 -1 1 x 1
A=|1 3 -2(, x=|y|, b=]|0
4 -3 1 z 2
We have
3 =2 -1 1 -1 1
det(A)_2‘_3 X —'_3 1‘+4‘ 3 _2‘_2( 3) — 2+ 4(—1) = —12,
so det(A) # 0 and by Cramer’s Rule
1 -1 1
1 1 5
- 0 3 —2|=—"(-5)=—>
FTAA) |9 5 () =5
[P Al
YT A |y o, 12 12
2 -1 1
1 1 1
T Aet(A) |, 3 9 V=15
Therefore the solution to the system, which is unique, is (5/12, —1/12,1/12). |

Next, we construct a method for finding the inverse of a square matrix using determinants,
provided the matrix is invertible.

Theorem 5.20. Let A = [a;;],. If det,,(A) # 0, then X = [z;;],, given by

(— 1)i+j detn,1 (A]z)
det, (A)

.I'ij =
for all 1 < 4,5 < n is the inverse for A.

Proof. Suppose that det, (A) # 0. For any j € {1,...,n}, let

Tnj
and recall the jth standard unit vector e; of F". By Cramer’s Rule the system of equations
corresponding to the matrix equation
AXj =€j
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has a unique solution given by

_ detn(al, RN S VI ej, Ajrl, .- ,an)
det, (A)

for each 1 < < n. Since the jth coordinate of e; is 1 and all other coordinates are 0, we obtain

-Tij

detn(al, R P N ej, Ajrl, - ,an) = (—1)i+j detn,l(Aﬁ)

by expanding the determinant along the ith column. Therefore
(=1)"* dety—1(Ay i)
det, (A)
for each 1 <i <mand 1 < j <mn, and if we define X = [2;;],, then we readily obtain

ZL’ij =

AX =1,. (5.12)

It remains to show that XA =1I,,. Since det, (A ") = det,,(A) # 0, we can find a matrix Y
such that ATY =1,,, and then

A'Y=1, = A'Y) ' =I! = Y'A=1I, (5.13)

Now, using ([5.12]) we obtain
Y'A=1I, = Y'AX=LX = Y (AX)=X = Y'[,=X = X=Y",
and hence
XA =1,

by the rightmost equation in (5.13)).
Since XA = AX =1,,, we conclude that

i)

is the inverse for A. [ ]

Put another way, Theorem states that if det, (A) # 0 then A is invertible, and the
inverse A~! is given by

S [(=1)"7 det,, 1 (Ay;)
[ ] -

Example 5.21. Show that if D € F"*" is given as a block matrix by
A B
>=lo ¢f
where A = [a;;], and C = [¢;;],, are square matrices, then

det, (D) = dety(A) det,, (C).
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Solution. We must show that, for all /,m € N,

detyy (D) = detypm, ({ [ag]g [cm]-g]m

where of course O = [0],,x¢ and B = [b;]exm.
First consider the case when ¢ =1 and m € N is arbitrary. Letting D = [d;;],n11 denote the
block matrix and expanding along the first column, we have

] ) — dete([as1]¢) detm ([cijlm). (5.15)

m+1

detmﬂ({ g [ij D = 3" (~1)"*'dy ety (D).

i=1

Since D11 = [¢ij]m, d11 = @ and d;; = 0 for ¢ > 1, let a;; = a to obtain

detnis(| o oy, | )= (i det (D) = adet ()
= dety([ayr) detm([ci]m)-

This establishes the base case of an inductive argument on /.

Next, fix £ € N, and assume that (5.15)) is true for ¢ and all m € N. We must show that
(5.15)) is true for £ + 1 and all m. Let m € N be arbitrary, and define

_ _ | laglenn B
D= [d@]]€+m+l - |: O [Czj]m .
Letting B; denote B with ith row deleted, and also setting A = [a;;]s4+1, we have

laijles B e
detyymi1(D) = detpymin o = Z (—1)""di1 detpym(Dir)

[Cijlm i1
£+1

=Y (1) ag detyy (D).
i=1

Since A;; is an £ x £ matrix for each 1 < i < £+ 1, by the inductive hypothesis we find that
detyym(D;1) = detyp, ( {‘g“ ED = dety(A;1) det,, (C)
for each 1 <i < /+ 1, and hence
+1
detrymi1(D) =Y (—1)"ay dety(A;) det,, (C) = detyr1(A) det,, (C).
i=1

By induction we conclude that (5.15)) holds for ¢,m € N, and therefore
A B
det({o C]) = det(A) det(C)
for any square matrices A and C. |

For the next example we define a minor of a matrix A € F™*™ to be the determinant of
any square submatrix of A. We have encountered minors already: each A;; that appears in
Definition is an (n — 1) x (n — 1) minor of the n X n matrix A.
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Example 5.22. For A € F"*" let 1 < k < min{m,n}. Show that rank(A) < k if and only if
every (k+ 1) x (k+ 1) minor of A equals 0.

Solution. By Proposition [4.69} rank(A) < k if and only if every (k4 1) x (k + 1) submatrix of
A is noninvertible. By the Invertible Matrix Theorem a (k + 1) x (k + 1) submatrix of A is
noninvertible if and only if the determinant of the submatrix equals 0. Therefore rank(A) < k
if and only if every (k+ 1) x (k4 1) minor of A equals 0. |

PROBLEMS

1. Solve the system
r+ y+2z=1
2z +4z =2
3y + z2=3
using Cramer’s Rule.
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5.4 — DETERMINANT FORMULAS

Recall the elementary matrices M, ;(c) and M, ; defined in section 2.3. Given a scalar z and
an n X n matrix A with row vectors ay, ..., a,, by Proposition we have

ax

M, ;(z)A = |a; + za;| }jth row,

a

and so by Proposition (recalling DP5 in Theorem we find that

aj a
det,(M; j(x)A) =det, | |a; +za;| | =det,| |a;| | =det,(A). (5.16)
- an - _an—

By Proposition the matrix M, ;A is obtained from A by interchanging the ¢th and jth
rows, and so by Proposition m (recalling DP2 in Theorem [5.4)) we find that

det,,(M; ;A) = —det,(A). (5.17)

We use these facts to prove the following.

Theorem 5.23. For any A, B € F"*",
det,(AB) = det,(A) det,,(B).

Proof. If A is not invertible, then AB is not invertible by Proposition [4.68 and we obtain
det,(A)det,(B) =0 - det,(B) = 0 = det,,(AB)

by the Invertible Matrix Theorem. If B is not invertible we obtain a similar result since
det,,(AB) = 0 and det,(B) = 0.

Suppose that A and B are both invertible, so that AB is also invertible by Theorem [2.26]
By the proof of Theorem the matrix A is row-equivalent via R1 and R2 operations to a
diagonal matrix

dy 0 dieq
D=| . |=]:
0 d, d,e,
that is, there exists a sequence of elementary matrices My, ..., My, of which ¢ are of the R2

variety and the rest of the R1 variety, such that
A =M, ---M;D.
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Now, if by, ..., b, are the row vectors of B, then
dibyq
DB = :
d,b,

and so, recalling (5.16]) and ( as well as Theorem |5 -
det, (AB) = detn((Mk -+-M;D)B) = det,, (M - - - M;(DB)) = (—1)" det,,(DB)
= (—1)"det, ((DB)") = (—1)"det, (diby ,...,d,b,)
= (=1)'dy---dydet,(b],....b} )= (=1)d; - - d, det,(BT)
= (=1)%d; - - - d, det,,(B) = (—1)" det,, (D) det,,(B)
= det,, (Mg - - - M;D) det,,(B) = det,,(A) det,,(B).

Here we use the fact that D is an upper-triangular matrix and so by Proposition has
determinant equal to the product of its diagonal entries. |

Theorem 5.24. If A € F™*" is invertible, then

1
det,(A)’

det,(A™1) =

Proof. Suppose that A € F**" is invertible. Then there exists some A~ € F**" such that
AA~!' =1,, and thus

det,, (A) det, (A1) = det,,(AA™) = det,(I,,) = 1. (5.18)

by Theorems and [5.4(7) . Now, the invertibility of A implies that det,(A) # 0 by the
Invertible Matrix Theorem, and so from ([5.18)) we readily obtain

1
det,(A)’

as desired. [ |

det,(A™1) =

Another way to write the statement of Theorem that is particularly elegant is:
det, (A1) = det,(A)"!

if A € F™*" is invertible.
Recall Corollary given a linear operator L : V — V| bases B and B’ for V, and
corresponding matrices [L]z and [L]g, we have

L]z = Ipp[L]slgs, (5.19)

From this matrix equation we obtain an interesting result involving determinants.
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Theorem 5.25. Let dim(V') = n, let L be a linear operator on V', and let B and B’ be bases
for V. If [L]g is the matriz corresponding to L with respect to B and |[L|p is the matriz
corresponding to L with respect to B', then

det,, ([L]g) = det,([L]5). (5.20)
Proof. From equation (5.19)) we obtain
det, ([L]s) = dety(Igg L] 5L )-
Now, by Theorems and [5.24]
det,,([L]s) = det,(Igg ) detn([L]5) det, (Tgz)

1
= det,,(Izg ) det,, ([L|g) ——
€ (BB) e ([ ]B)detn(IlgB/)
= det,([L]g),
which affirms (5.20)) and finishes the proof. [

Thus the determinant of the matrix corresponding to a linear operator on V' is invariant in

value under change of bases, so that we can meaningfully speak of the “determinant” of a linear
operator.

Definition 5.26. Let dim(V') = n, and let L be a linear operator on V. The determinant of
L s defined to be

det,, (L) = det, ([L]),
where [L] is the matriz corresponding to L with respect to any basis for V.
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5.5 — PERMUTATIONS AND THE SYMMETRIC GROUP

Definition 5.27. Let n € N, and let I, = {1,2,...,n}. The symmetric group S, is the
group consisting of all bijections
o:1,— 1,

under the operation of function composition o. Each o € S,, is called a permutation.

By definition every group must have an identity element. We denote by ¢ the identity
permutation in S, that is given by (k) = k for each k € I,,.

A special matrix notation, known as the two-line notation, is often used to define a
permutation o € §,, explicitly. We write

1 2 -
o(l) o(2) -+ a(n)

to indicate that ¢ maps 1 to the value ¢(1), 2 to the value 0(2), and so on. Thus the first row
of the matrix lists the “inputs” for the function o, and the second row lists the corresponding
“outputs.”

Since o € S, is a bijection, it has an inverse which we denote (as usual) by o~!, and it is

easy to see that 0= € S, also. We also define 0° = ¢, 0! = 0, 02 = 0 0 0, and so0 on.

g =

Example 5.28. One permutation belonging to the group Ss is o : Is — 5 given by
o(l)=4, o(2)=2, o3)=1, o(4)=5, o(b) =3,
which we denote by

DN DN
— W
[SARTEN

L ot
[

in the two-line notation. [ |

Example 5.29. Just as there are 6 possible permutations (i.e. ordered arrangements) of a set
of 3 distinct objects {a, b, ¢}, namely

(a,b,¢), (a,c,b), (bya,c), (bca), (c,ab), (cb,a),
so too are there six permutations in the group S3. These are
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
12 317 (1 3 20 (21 3 (2 3 1" |3 1 2" (3 2 1|
The first permutation in the list is the identity permutation €. |

If o,7 €S8, then Too € S, is given by
(To0)(i) =7(o(z))

for each ¢ € I,, in the usual manner of function composition. Thus

o2 nH 12 o
) 7(2) - m()) o) a(2) -- o(n)
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Example 5.30. In &3 we have

1 2 3 1 2 3 1 2 3
[1 3 2}0{3 2 1]_{2 3 1]’ (5:21)
Note that the matrix immediately to the right of the symbol o in ([5.21)) takes the input first, so

1 2 3 1 2 3
1—>{3 9 1}—>3—>L 3 2}—>2,
which gives the first column of the matrix to the right of the = symbol in (5.21)). ]

Assuming n > 2, a transposition is a permutation 7 € S,, for which there exist k,¢ € I,
with k£ # ¢ such that

i, ifie I, \{k, ¢}
(i) =<k, ifi=1/
l, ifi=k.
Thus a transposition interchanges precisely two distinct elements of I,, while leaving all other
elements fixed. The classic example in S; is

s i)

1 2 3 4
1 4 3 2|
Any permutation o € S, is uniquely determined by the arrangement of the elements of I, in

the second row of its corresponding matrix. Since the n elements in I,, have n! possible distinct
arrangements, it follows that S, itself has n! elements. This proves the following.

and an example in Sy is

Proposition 5.31. |S,| = n! for alln € N.

We now introduce another notation for elements of S, called cycle notation. For m <n
let J = {j1,J2,J3,---,Jm} be a set of distinct elements of I,,. Then the symbol
(j17j27j37~~;jm>7 (522)
denotes a permutation in §,, that performs the mappings
J1Fr Je > g3 el 2 Jm 2 1,
and also i — i for any ¢ € I,, \ J. Using function notation, if o € S, is such that
0= <j17j27j37 <o 7jm)7
then
o(j1) =J2, o(j2) =Jss --os O(m-1) = Jm, 0(Jm) = J1,
with (i) =i for any ¢ € [, \ J.
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Any permutation expressible in the form ([5.22)) is called a cycle. The entries in ((5.22)) are
ideally envisioned as being written in a circular arrangement, like the numbers on a clock, so
that the “last” entry 7j,, is naturally seen to be followed by 7;. In this way

(jm7.j1aj27 cee ajm—l)

is easily recognized as being the same permutation as that given by (/5.22)).

Example 5.32. In S; the cycle (1,3,2) is the permutation

1 2 3
31 2|

In S5 the cycle (1,3,2) is the permutation

1 2 3 45
31 2 4 5|

Since (1,3,2) € S5 does not feature 4 or 5 among its entries, we see that (1,3,2) maps 4 — 4
and 5 — 5.
In §,, for any n > 3 we have

(1,3,2) = (2,1,3) = (3,2,1).

That is, moving the last entry in a cycle to the first position does not change the corresponding
permutation. |

As with permutations in general, two cycles ¢ and 7 in §,, may be composed. If

g = (j17j27 e 7]m> and T = (7;1,@2, . ,ie), (523)
then
(j17j27-"ajm)o(i17i27"-7i£)

is the permutation o o 7. Typically the symbol o is omitted in the cycle notation, and we write
00T = (jlaj?v s 7.jm)(2.177;2a s 7i€)-

The length of a cycle is simply the number of entries it contains. For instance the cycles o
and 7 in (5.23) have lengths m and /¢, respectively. We will say a cycle is an m-cycle if it has
length m. We now gather a few facts about transpositions.

Proposition 5.33. Let n > 2.

1. 8 has no transpositions.

2. 7 €8, is a transposition if and only if T is a 2-cycle.
3. If T € S, is a transposition, then ToT = €.

4. If 11, € S, are transpositions, then T4 0 Ty = T 0 T1.
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Proof.
Proof of (3). Suppose T € S, is a transposition, so 7 = (a, b) for some a,b € I, with a # b by
part (2). Then

(tor)(a) =7(7(a)) =7(b) =a and (ro7)(b)=7(7(b)) =7(a) =",

and furthermore
(tor)(i) =7(7(7)) =7(i) =1

for any i € I, \ {a,b}. Therefore To7 =¢. |

Proofs of the other parts of Proposition |5.33| are left as exercises.
Two cycles (ji,...,Jm) and (i1,...,7) in S, are disjoint if

{jla"'?.jm}m{ila'-'yif}:ga

which is to say the cycles have no entries in common. Thus (1,6, 3) and (4, 2, 5, 8) are disjoint since
{1,6,3}n{4,2,5,8} = @, but (5,2,1) and (3, 1,9, 2) are not disjoint since {5,2,1}N{3,1,9,2} =
{1,2}.

Proposition 5.34. If (j1,...,Jm) and (i1, ..., i) are disjoint cycles in S, then
(TP 0 | C ST 7) I (ST 7) [ ST S B

The proof of Proposition |5.34]is left as an exercise. Another way to state Proposition |5.34]is to
say that disjoint cycles commute. Parts (2) and (4) of Proposition imply that commutativity
always holds in the special case of 2-cycles, even if the 2-cycles under consideration are not
disjoint.

The process of expressing a permutation as a composition of two or more cycles is known
as cycle decomposition. Even a permutation that is itself a cycle we may be interested in
expressing anew as a composition of two cycles of lesser length. Indeed, of particular importance
to us along our path to a new formulation for determinants in the next section is the process of
decomposing a permutation into 2-cycles (i.e. transpositions).

Example 5.35. Consider the permutation

1 234567
361 25 74

in §7. We see that 0 maps 1 to 3, and also 3 back to 1. We may write this as 1 — 3 +— 1. We
also have the chain of mappings

g =

26 T4 2.
The only mapping left is 5 — 5. Thus o has the cycle decomposition
(1,3)(2,6,7,4),

or equivalently (2,6,7,4)(1,3). Recall that if a value is absent from a cycle’s list of entries, then
the cycle returns that value unchanged. Thus

5—(1,3) -5 —(2,6,7,4) — 5,
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whereas
1—(1,3) -3—(2,6,7,4) — 3.

To decompose ¢ into transpositions it is only necessary to decompose (2,6,7,4) into trans-
positions. In fact we have

(2,6,7,4) = (2,6)(2,7)(2,4),
where the three transpositions on the right-hand side may be written in any order, and so
o=(1,3)(2,6,7,4) = (1,3)(2,6)(2,7)(2,4),

where again any order is permissible. |

It was not mere luck that the permutation ¢ in Example [5.35| was able to be decomposed
into transpositions. As the next proposition makes clear, this is true of any permutation in S,
for n > 2.

Proposition 5.36. Let n > 2. If o € S, then for some k € N there exist transpositions
T, ..., Tk €S, such that

O =T] 00T

Proof. The proof will employ induction, so we start by showing the n = 2 case is true. The
symmetric group Sy has only two elements: € and (1,2). Since (1,2) is already a transposition,
we need only show that
|12
STl 2

can be expressed as a composition of transpositions. But by Proposition W(B) we immediately
have € = (1,2)(1, 2), and so we’re done.

Now let n > 2 be arbitrary, and suppose the statement of the proposition holds for this value
n. Let 0 € 5,41, so that

{1 2 - on+ 1]
o=1. . :
(A A |
Since o : I,41 — I,,41 is a bijection there exists some m € I, such that o(m) =n + 1. There
are two cases to consider: either m=n-+1orm <n+ 1.

If m = n+1, so that o(n + 1) = n + 1, then o(:) € I, for each i € [,. If we define
o1, — I, by 6(i) = o(i) for each i € I,,, then ¢ € S,;, and by our inductive hypothesis there
exist transpositions 7,...,7, € S, such that 6 = 71 0 --- o 7,. By Proposition W(Q) each
transposition 7; is a 2-cycle (a;, b;), and since a;,b; € I, and I,, C 1,41, it follows that (a;, b;)
also defines a 2-cycle in S,4;. Taking 7; = (a;,b;) to be in S,4; for each 1 < j < k, we find
that 0 = 1 0--- o7, and so o is expressible as a composition of transpositions.

Suppose next that m < n+ 1, so o(m) = n+ 1 for m € I,. Defining oq € S,41 by
0o = oo (m,n+ 1), Proposition [5.33|3) and the known associativity of the function composition
operation imply that

og=coe=00((mn+1)o(mn+1))

=(oco(m,n+1))o(mn+1)=0cyo(m,n+1). (5.24)



189

Now, since
oo(n+1)=(co(mn+1)(n+1)=0(m)=n+1,

we see that oy has the property treated in the m = n + 1 case, and so by the same argument
used in that case there exist transpositions 7y, ..., 7 € S,41 such that o = 7 0---07,. Then

by (5.24]) we find that

og=T10---01,0(mn+1),

which shows that ¢ is again expressible as a composition of transpositions. |

What Proposition does not say is that the cycle decomposition of a permutation into
transpositions is necessarily unique, and that’s because it never is. Even for (1,2) € S we have

(1,2) = (1,2)(1,2)(1, 2) = (1,2)(1,2)(1,2)(1, 2)(1, 2),

and in general (1,2) = (1,2)%~! for any k € N.

Is there anything more that can be said about the decomposition of a permutation into
transpositions, beyond its mere existence? Recall that any integer has a parity, which is to
say the integer is either even (divisible by 2) or odd (not divisible by 2). Now we define the
parity of a particular decomposition of o € §,, into transpositions 7y, ..., 7, as being odd if k£
is odd, and even if k is even. The next proposition states that no one permutation can have
two decompositions of opposite parity.

Proposition 5.37. Let n > 2. If 0 € S,,, then the decompositions of o into transpositions are
either all odd or all even.

Proof. The proof will employ induction, so we start by showing the n = 2 case is true. The
symmetric group Se has only two elements, ¢ and (1,2), with (1,2) in particular being the only
transposition available. Now, for any k£ > 0 Proposition m(?)) implies that

(L2*=[(1,2)(1,2)] = =¢,

and
(1,2)%M1 = (1,2)(1,2)* = (1,2) 0o e = (1, 2).

Thus all the possible even decompositions equal €, and all the possible odd decompositions equal
(1,2). It follows that £ has only even decompositions, and (1,2) has only odd decompositions.

Now let n > 2 be arbitrary, and suppose the statement of the proposition holds for this value
n. The remainder of the proof we leave as an exercise. |

It is because of Proposition that the following definition is meaningful.

Definition 5.38. Let n > 2. A permutation o € S, is even if it can be expressed as a
composition of an even number of transpositions, and odd if it can be expressed as a composition
of an odd number of transpositions. By definition ¢ € &, we take to be even.

The sign function on S, is the function sgn : S,, — {—1,1} given by

sen(c) 1, if o is even
n(o) =
& —1, if o is odd.
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The only element of S is

= 1],

which cannot be expressed as a composition of transpositions since there are no transpositions
in S;. Nonetheless it will be convenient to define € € S; to be even, and therefore sgn(e) = 1.

Remark. Since (—1)™ is 1 if m is even and —1 if m is odd, we see from Definition that if
a permutation o can be expressed as a composition of m transpositions, then sgn(o) = (—1)™.

It is straightforward to check that the composition of two even permutations is again even,
and so if A, is the set of all even permutations in S,,, then A, is in fact a subgroup of S,, called
the antisymmetric group. In contrast the composition of two odd permutations is even, and
so the set S, \ A, of all odd permutations in S, is not a group since it is not closed under the
operation o of function composition.



191

5.6 — THE LEIBNIZ FORMULA

In §5.2 we found that, for each n € N, the functions det,,; and det;w- were equal for all
1 <14,7 < n; that is,
det,; =--- =det,, = det;L1 == det;W .

That all these functions are the same ultimately derives from the fact that they all possess the
six properties given in Theorem A close look at these properties, however, reveals that not
all of them are fundamental. That is, some of the properties are an immediate consequence of
one or more of the others. In particular, analyzing the details of the theorem’s proof, it can be
seen that properties DP1, DP2, and DP3 are independent (i.e. no two can be used to derive the
third), and yet taken together they readily imply DP4, DP5, and DPG6.

While all the “different” determinants defined in §5.2 turned out to be the same, it is
reasonable to wonder whether there is some way to define the determinant of a square matrix A
so that it possesses the properties in Theorem and yet is genuinely different. Put another
way, if the minimum qualifications that a function must satisfy in order for it to be called a
“determinant” are that it possess the multilinearity, alternating, and normalization properties in
Theorem [5.4] does that uniquely characterize the function? The answer is yes.

Theorem 5.39 (Uniqueness of the Determinant). For n € N suppose D : F"*" — T has
the following properties:

DP1. Multilinearity. For any 1 < j <n and x € T,
D(...,aj,...)+D(...,bj,...):D(...,aj+bj,...),
and
D(...,za;,...)=xD(...,a;,...).
DP2. Alternating. For any 1 < j < k < n,
D(...,a;,...,a4,...)=—D(...,a,...,4;,...).

j %
DP3. Normalization.
D(1,) =1.

Then D = det,,.

Proof. Applying DP2 in the case when a; = a; = u gives

and hence
D(...,u,...,u,...)=0.

That is, D(A) = 0 whenever A € F"*" has two identical columns.
Let A =[a; --- a,] € F"*" be arbitrary. By DP1,

D(A) = D(al, . ,an) = D (Z ailleil, ceey Z ainnein>

i1=1 in=1
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n n
= E E D(ailleil,...,ainnein)

=1 in=1
n n
:Z~-Zam-'-ainnD(eil,...,ein). (525)
11=1 in=1
It remains to evaluate D(e;,,...,€;, ) in (5.25). In fact we have D(e;,...,e;,) = 0 whenever
ir, = i, for some k # (, since the matrix [e;; --- €;,] then has two identical columns, and it

follows that only those terms in the sum (5.25)) for which the list of values iy, .. .,1%, represents a
permutation o € S, are all that’s left. In particular, for each such term we take o to be given by

o(k) =i for 1 < k < n, and since there is a one-to-one correspondence between the remaining
terms in ([5.25)) and the elements of S,,, we obtain

D(A) = Z a0(1)71 s ag(n)mD(eg(l), e ,eg(n)>. (526)

G’GSn

Now, for any o € §,, there exist, by Proposition [5.36, transpositions 7, ..., 7, such that
0=Tno---o1. By DP2,

D(ey,....e,) = —=D(er1),-- s €nm) = (=1)’D(eryn 1)), - - - €r(nn))

= (=1’ D(€ry(ra(m(1))): - - - Ery(ma(ri(m))))

= (=1)"D(€(romor)(1)s -+ s €(rmorom)(n))
= sgn(0)D(es1); - - €o(m));
and so by DP3, noting that 1/sgn(c) = sgn(o),
D(esqy, - .- €,m)) =sgn(o)D(ey,...,e,) =sgn(o)D(I,) = sgn(o).
Putting this result into ([5.26|) gives

D(A) = Z As(1),1 " Qo(n),n SgH(U)- (527)

g€Sy

The expression at right in is entirely independent of D. Indeed, if we assume D is
another function on F"*" that satisfies the properties DP1, DP2, and DP3, then an identical
argument will lead to D(A) equalling the same expression, and hence D(A) = D(A). Since
det,, has the properties DP1, DP2, and DP3, we conclude that det,,(A) = D(A). |

The proof of Theorem [5.39 immediately gives the following result, which is a formula for the
determinant function that is explicit rather than recursive.

Theorem 5.40 (Leibniz Formula). For any n € N and A € F"*",

detn<A) - Z Sgn(a>aa(1),1aa(2),2 *Ao(n),n-

O'GSn
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Proposition 5.41. Letn > 2. For any 1 < k </{ <n,

Z sgn(a)(aa(k)ﬁkag(g)ﬁk H aa(i)ﬂ) = 0. (5.28)

o€S, i€In\{k,L}

Proof. Fix 1 <k < ¢ <mn, and let £, denote the sum in ([5.28). Then

Y, = Z(an(k),kaﬂ'(f),k H aw(i),i>_ Z (a,,(k),ka,,(g),k H aV(i)7i>. (5.29)

TEAR i€\ {k,0} vESH\An i€, \{k,0}

Fix m9 € A,. Then vy = mp o (k,£) € S,, \ A, is given by

mo(i), ifie I, \ {k,n}

Vo(i) = ’/To(g), ifi=k

mo(k), ifi=1¢,

so that
Qg (0),kAug (K),k H Qg (i), = Qmo(k),kbro(£),k H Qo (),i+
i€, \{k,0} i€, \{k,0}

This shows that the term in the sum ) __, that corresponds to m is canceled by the term in
Y e Su\An that corresponds to vy at right in . In a similar way, for any 1, € S,, \ A,, we
have m; = vy 0 (k,{) € A, and the terms in ) __, and Zuesn\An corresponding to m; and 14
will cancel in (5.29). Therefore the sum ) must equal zero. |
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EIGEN THEORY

6.1 — EIGENVECTORS AND EIGENVALUES

Throughout this chapter we assume that all vector spaces are finite-dimensional with
dimension at least 1 unless otherwise specified.

Definition 6.1. Let V' be a wvector space over F and L : V — V a linear operator. An
etgenvector of L is a nonzero vector v € V such that

L(v)=Av

for some X € F. The scalar )\ is an etgenvalue of L, and v is said to be an eigenvector
corresponding to \. The set

Er(\) ={veV:Lkv)=\v}
is the etgenspace of L corresponding to \.
The symbol o(L) will occasionally be used to denote the set of eigenvalues possessed by a
linear operator L, so that |o(L)| denotes the number of distinct eigenvalues of L.
A careful examination of Definition should make it clear that, while the zero vector

0 € V cannot be an eigenvector, the zero scalar 0 € I can be an eigenvalue. Despite not being
an eigenvector, however, it is always true that 0 is an element of E7()) since

L(0) =0 =)0

holds for any linear operator L

Proposition 6.2. Let V' be a vector space. If L : V — V s a linear operator with eigenvalue A,
then Ep(\) is a subspace of V.

Proof. Suppose L : V — V is linear with eigenvalue A. It has already been established that
0 € Er(A). Given u,v € E7()\) and scalar ¢ we have

Lu+v)=Lu)+ L(v) = u+ v =Au+v)
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and
L(cv) = cL(v) = c(Av) = A(ev),

which shows that u+v € E()\) and cv € EL(N). [

Example 6.3. Let V be a vector space and consider the identity operator Iy : V — V given
by Iy (v) = v for all v € V. It is clear that A = 1 is the only eigenvalue of Iy, and all nonzero
vectors in V' are corresponding eigenvectors. Indeed,

E,(1)={veV:l(v)=v}=V

is the corresponding eigenspace. |

Example 6.4. Let V be a vector space and consider the zero operator Oy : V — V given by
Oy (v) =0 for all v € V. For any v # 0, then, we have

Oy(v) =0=0v,
which shows that 0 is an eigenvalue of Oy. Moreover
Eo,(0)={veV :0y(v)=0v}=V

is the corresponding eigenspace. There are no other eigenvalues. |

In addition to eigenvectors, eigenvalues, and eigenspaces of linear mappings, there are related
notions for square matrices.

Definition 6.5. Let A € F"*". An eigenvector of A is a nonzero vector x € F" such that

Ax = Xx

for some N € F. The scalar X is an etgenvalue of A, and x is said to be an eigenvector
corresponding to \. The set

Ea(N) ={xeF": Ax = \x}

is the etgenspace of A corresponding to .

The symbol o(A) will occasionally be used to denote the set of eigenvalues possessed by a
square matrix A, so that |0(A)| denotes the number of distinct eigenvalues of A.

Remark. A careful reading of Definition should make it clear that any eigenvector corre-
sponding to an eigenvalue of A € F™*™ must be an element of F". Thus, if we are given that
A € R™™, then we would discount any z € C" \ R” for which Az = Az for some \ € R.

Proposition 6.6. If \ is an eigenvalue of A € F"*", then Ea(\) is a subspace of F".
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Proof. Suppose that A is an eigenvalue of A. By Definitions and |3.15]
x€FEA(N) & Ax=Xx & Ax—Xx=0 & Ax—-A,x=0
< (A-AM)x=0 & xe€Nul(A-)\L,).

That is,

Ea()\) = Nul(A — \L,), (6.1)
the null space of A — AI,,. By Proposition Nul(A — AL,) is a subspace of F", and hence so
too is Ea(A). |

Proposition 6.7. Let V' be a vector space over F, and suppose L € L(V') has eigenvalues A1, Ao
with corresponding eigenvectors vy, vy, respectively.

1. ]f>\1 7é Ag, then Vi 7é Vo.
2. EL()\l) N EL(/\Q) = {0} ’Lf and 07’Lly Zf /\1 7é /\2.

Proof.
Proof of Part (1). We will prove the contrapositive: “If vi = vy, then \; = X\2.” Suppose that
Vi = Vg =YV, S0
)\1V = )\1V1 = L(Vl) = L(VQ) = /\2V2 = )\QV,
and then
(A —A)v=XA\v—Av=0.

By Proposition (3) either Ay — Xy = 0 or v = 0. But v # 0 since an eigenvector is nonzero
by definition, and so it must be that A\; — Ay. Therefore A\; = \s.

Proof of Part (2). Suppose A\; = Ay = A, so that A is an eigenvalue of L with corresponding
eigenvectors vi and vs. In particular

vi € EL(N) = EL(M\) = EL(Xg),

and thus
Vi € EL<)\1) N EL()\Z)

Since vy # 0, it follows that Er (A1) N EL(A2) # {0}.
For the converse, suppose A\; # Ao. Let v € Er(A\) N Er(Ay). Then L(v) = \v and
L(v) = Ayv, and thus \;v = Ayv. Now,

AV = v = ()\1 — )\Q)V = 0,

and since A; — Ay # 0, Proposition [3.2(3) implies that v = 0. Therefore E(A\;) N Ep(A2) =
{0}. |

The converse of Proposition [6.7/(1) is not true in general; that is, if L € £(V) has eigenvalues
A1, A with corresponding eigenvectors vi, vo, then v # vs does not necessarily imply that
A1 # Ao, Consider for example vy = 2vy: certainly vy # vy since we know vy # 0, but

L(Vg) = L(2V1) = 2L(V1) = 2()\1V1> = )\1(2V1) = /\1V2
shows that A\; = \,.
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Theorem 6.8. Let V' be a vector space over F, and let L € L(V') have distinct eigenvalues
A, ..oy €EF. If vy, ..., v, are eigenvectors corresponding to \i, ..., \,, respectively, then the
set {vi,...,v,} is linearly independent.

Proof. An eigenvector is nonzero by definition, so if n = 1 then certainly the set {v;} is linearly
independent. This establishes the base case of an inductive argument.

Suppose the theorem is true when n = m, where m is some arbitrary positive integer (this
is our “inductive hypothesis”). Let L be a linear operator on V' with distinct eigenvalues
Ay, Amy1 and corresponding eigenvectors vy, ..., Vyy1, so that L(vg) = Agvy for each
1 <k <m+1. Suppose ci,...,Cni1 € F are such that

m+1
Z CLVE = 0. (62)
k=1

Since the eigenvalues \q, ..., A\, are distinct, there exists some 1 < ky < m + 1 such that

A, # 0. Since the eigenvalues may be indexed in any convenient way, we can assume kg = m+1
so that A,,+1 # 0. Multiplying (6.2) by A,,11 gives

m+1

> kAmiavi =0, (6.3)
k=1

and we also have

m+1 m+1 m+1
k=1 k=1 k=1

Subtracting (6.3) from the rightmost equation in (6.4)), we obtain

m+41 m+1

E CkAE Vi — E Ck)\erle =0,
k=1 k=1

so that
m—+1
Z Ck()\k - )\m+1)vk =0. (65)
k=1

Of course

(AN — Amg1)vE =0

if Kk =m+ 1, and so (6.5 becomes

> (e = Amy1)vi = 0. (6.6)
k=1
Now, vi,...,Vv,, are the eigenvectors corresponding to the distinct eigenvalues Ay,..., \,,, and

so by our inductive hypothesis the set {vy,...,v,,} is linearly independent. From it follows
that

k(M — Amy1) =0
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for 1 < k < m, which in turn implies that ¢, = 0 for 1 < k& < m since Ay, ..., \,, do not equal
Am+1- Now (6.2) becomes ¢4 1V,,11 = 0, which immediately yields ¢,, 11 = 0. Since (6.2 results
only in the trivial solution

01:"':Cm+1:0
we conclude that vq,...,v,,.1 are linearly independent.
We see now that the theorem holds for n = m + 1 when we assume that it holds for n = m,
and therefore by induction it holds for all n € N. |

Corollary 6.9. If V is a finite-dimensional vector space and L € L(V'), then L has at most
dim(V') distinct eigenvalues.

Proof. Suppose that V' is an n-dimensional vector space and L € L(V'). Suppose A1, ..., Ayi1

are distinct eigenvalues of L with corresponding eigenvectors vy, ..., v,.1. Then {vy,...,v,41}
is a basis for V' by Theorem and we are led to conclude that the dimension of V' is n + 1,
which is a contradiction. Therefore L has at most n distinct eigenvalues. ]

Example 6.10. Let A € F"*" be the diagonal matrix
AN - 0
A=|:
0 - A\,

having distinct diagonal entries Ay, ..., A, (i.e. A\; # A; whenever ¢ # j). If ey, ..., e, are the
standard basis vectors for ", so that

1 0 0

0 1 0
e = .l €2 = Sy ey R = A

0 0 1

then for each 1 < k < n we find that Aep = \rex, and so )\ is an eigenvalue of A.

If L is the linear operator on F" having A as its corresponding matrix with respect to
the standard basis £ = {ey, ..., e,}, then clearly A\;,..., A, are distinct eigenvalues of L, with
e, ...,e, being corresponding eigenvectors:

L(ek) = Aek = )\kek.

Of course the eigenvectors ey, ..., e, are linearly independent as predicted by Theorem [6.§f W

Proposition 6.11. An operator L € L(V') is not invertible if and only if 0 is an eigenvalue of
L. A matriz A € F™" is not invertible if and only if 0 is an eigenvalue of A.

Proof. By the Invertible Operator Theorem (Theorem , L is not invertible if and only if
Nul(L) # {0}, and Nul(L) # {0} if and only if there exists some v # 0 such that L(v) = 0,
which is to say 0 is an eigenvalue of L since 0 = Ov.

By the Invertible Matrix Theorem (Theorem , A is not invertible if and only if
Nul(A) # {0}, and Nul(A) # {0} if and only if there exists some x # 0 such that Ax = 0,
which is to say 0 is an eigenvalue of A since 0 = 0x. |
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Proposition 6.12. Let L € L(V) and A € F™.

1. Let n € N. If X is an eigenvalue of L (resp. A) with corresponding eigenvector v, then \" is
an eigenvalue of L™ (resp. A™) with eigenvector v.

2. Suppose L and A are invertible. If X is an eigenvalue of L (resp. A) with corresponding
eigenvector v, then A\™1 is an eigenvalue of L™ (resp. A~') with eigenvector v.

The proof will consider only the statements about an operator L : V — V since the
arguments are much the same for a square matrix A.

Proof.

Proof of Part (1): The n =1 case is trivially true. Suppose the statement of Part (1) is true for
some arbitrary n € N. Let A be an eigenvalue of L with corresponding eigenvector v. Then
L(v) = Av, and by our inductive hypothesis L"(v) = \"v. Now,

L' (v) = L"(L(v)) = L*(Av) = AL"(v) = A(A\"v) = A"y,

and Part (1) is proven for all n € N by the principle of induction.

Proof of Part (2): Suppose that A is an eigenvalue of L with corresponding eigenvector v, so
that L(v) = Av. By Proposition we obtain L™'(Av) = v, and since A # 0 by Proposition

6.11], it follows that
L7w)=v = A 'v)=v = L*(v)=X\"'v.

Hence A\7! is an eigenvalue of L. |
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6.2 — THE CHARACTERISTIC POLYNOMIAL

Definition 6.13. Let A € F"*". The characteristic polynomzial of A is the polynomial
function Pay : F — T given by
Pa(t) = det, (A — tI,,).

Some books define the characteristic polynomial of A to be det(tI, — A) instead of
det(A — tI,), but whichever way it is done will have no impact on either the theory of
characteristic polynomials or any application involving them. This is because only the zeros of
the characteristic polynomial will be of any concern. Setting Qa (t) = det(tL, — A), observe
that Pa = Qa if n is even, and Px = —Q if n is odd. In either case Pp and Qo will have the
same zeros.

Proposition 6.14. Let V' be a vector space over F with dim(V') =n, and let L € L(V). Then
the following statements are equivalent.

1. X is an eigenvalue of L with corresponding eigenvector u.

2. There exists some basis B for V' such that X\ is an eigenvalue of [L]|g with corresponding
eigenvector [ulg.

3. For all bases B for V., X is an eigenvalue of [L]g with corresponding eigenvector [ulg.

Proof.

(1) = (3): Suppose that A is an eigenvalue of L, so there exists some u # 0 such that L(u) = Au.
Let B be any basis for V, and let [L]g € F™*™ be the matrix corresponding to L with respect to
B, so that

[L]slv]s = [L(v)]s

for all v € V. Recall that by Theorem the coordinate map V' — F™ given by v — [v]z is
an isomorphism, so [u]g € F" is not the zero vector since Nul([-]z) = {0}. Thus, from

[L]s[u]s = [L(u)]s = [M]s = Alu]s

we conclude that A is an eigenvalue of [L|s with corresponding eigenvector [u]p.
(8) = (2): This is obvious.

(2) = (1): Suppose there exists some basis B for V' such that A is an eigenvalue of [L]z with
corresponding eigenvector [u]g. Again, the coordinate map [- |z : V' — F" is an isomorphism, so

[Llslu]s = Auls = [L(w)]s=[ ] = L(u)=Au,

where the last implication follows from the fact that [-]z : V — F” is injective. Therefore A is
an eigenvalue of L with corresponding eigenvector u. |

We see from the proposition that if we consider two different bases B and B’ for V', then
the matrices corresponding to L with respect to these bases, [L]g and [L]g, have the same
eigenvalues as L. The only thing that changes is the corresponding eigenvector: [v]z is an
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eigenvector of [L|z corresponding to eigenvalue A if and only if [v]|p is an eigenvector of [L]p
corresponding to eigenvalue .

But there’s something more: the characteristic polynomials of [L]g and [L]z will be found
to be the same! To see this, recall Iz, the change of basis matrix from B to B’. By Corollary

[4.33 we have
[L]B’ = IBB’ [L]BIz?zlsf'
Now, noting that I, = I, 1,155 and
1
det(Igg ) det(IzL) = det(Tpp) - —— =1
€ ( BB) € ( BB) € ( BB) det<IBB/)

by Theorem for any t € F we have
Py (1) = det([L]g — t1,) = det (IBB’ [L]BIEzls/ - t(IBB'InIEzls/))
= det((Inp [Lls — t(Iap L) Ip) = det((Isp [L]s — Lnp (t1:))Igp)
= det(Igp ([L]5 — t1,)Igs ) = det(Igg ) det([L]z — t1,) det(I5)
([L]s — tL) = Pjs(t)

by Theorem [5.23, That is, Fz),, = Pzjs, which is to say that the characteristic polynomial of
a linear operator’s associated matrix is invariant under change of basis. We have proven the
following.

Proposition 6.15. Let L : V — V be a linear operator, and let B and B’ be bases for V. If
[L]g and [L|g are the matrices corresponding to L with respect to B and B', then Pjr),, = Pir),,, .

Because of Proposition [6.15] it makes sense to speak of the “characteristic polynomial” of a
linear operator on V' without reference to any specific basis for V.

Definition 6.16. Let L be a linear operator on V. The characteristic polynomaial of L is
the polynomial function Py : F — F given by

PL(t) = P[L]<t)7

where [L] is the matriz corresponding to L with respect to any basis for V.

While the idea of an eigenvalue is simple, it can be quite difficult to find eigenvalues of either
a linear operator or a matrix by direct means. To help find the eigenvalue of a linear operator
we have the following.

Theorem 6.17. Let L : V — V be a linear operator. Then X\ is an eigenvalue of L if and only
if L — My 1s not invertible.

Proof. Suppose that \ is an eigenvalue of L. Then there exists some v € V such that v # 0
and L(v) = Av. Now,

(L—=My)(v)=L(v) = (My)(V) = Av = My (V) = Av — Av = 0,
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which shows that v € Nul(L — Aly) and so Nul(L — A\Iy) # {0}. Hence L — Ay is not invertible
by the Invertible Operator Theorem.

For the converse, suppose that L — Ay is not invertible. Then Nul(L — AIy) # {0}
by the Invertible Operator Theorem, and it follows that there exists some v # 0 such that

(L — Aly)(v) =0. Now,
(L=My)(v)=0 < L(v)=Ay(v)=0 & Lv)—Av=0 < L(v)=A\v,

and therefore A is an eigenvalue of L. ]

The next theorem plainly reduces the problem of finding eigenvalues of an n x n matrix to
that of finding the zeros of an nth-degree polynomial function. We begin to see the utility of
characteristic polynomials at this point.

Theorem 6.18. Let A € F"*". Then A is an eigenvalue of A if and only if Pa(\) = 0.

Proof. Suppose that A is an eigenvalue of A, so that Axy = Ax( for some x, € F". Define the
linear mapping L : F" — F" by L(x) = Ax. Then

L(x¢) = Axg = Axg
shows that A is an eigenvalue of L, and so by Theorem the mapping
L — Myn : F* — F"
is not invertible. Let I = Ip», and observe that the matrix associated with L — A\l is A — A\I;:
(L=M)(x)=L(x) - Mx)=Ax— x=Ax— \,x= (A - \,)x

for all x € F™. Thus, since the operator L — AI is not invertible, by Corollary its associated
square matrix A — AI,, is also not invertible, and so det(A — AI,) = 0 by the Invertible Matrix
Theorem. That is, Pa(A) = 0.

Conversely, suppose that Pa(A) = 0. Then det(A — AL,) = 0, so by the Invertible Matrix
Theorem A — AL, is not invertible. Define L : F* — F" by L(x) = Ax. Then A — A1, is the
matrix corresponding to the linear operator L — A\I : F" — F" and by Corollary L— M\ is
not invertible. So A is an eigenvalue of L by Theorem [6.17], which is to say there exists some
nonzero xg € F™ such that L(xg) = Axg. Hence Axg = Axy and we conclude that \ is an
eigenvalue of A. ]

Example 6.19. Find the characteristic polynomial P5 : R — R of

1 -3 3
A=|3 -5 3],
6 —6 4

find the eigenvalues of A, and find a basis for each eigenspace as a subspace of R3.
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Solution. We have

1 -3 3 t 00 1—t =3 3
Pa(t) =det(A —tI3) =det| |3 =5 3|—|0 ¢t O||=] 3 —=H—-t 3
6 —6 4 00 ¢t 6 -6 44—t
1—t =2—t 3 1—t -2—t 3
atesoe | 3 9y 3 | Zdron .90 0 |.
6 0 4—t 6 0 4—t
Expanding the determinant according to the 2nd row then gives
—2—t
Palt) = (1 +2) | = -,

and so we see that Pa(t) = 0 for t = —2,4. Thus by Theorem the eigenvalues of A are
A= —24.
By (6.1]) the eigenspace of A corresponding to A = —2 is

Ea(—2) = Nul(A +2I3) = {x € R* : (A + 2I3)x = 0}
T 3 -3 3 T 0
= |z | €R? |3 =3 3||laza|=|0
T3 6 —6 6||z3 0

Writing the matrix equation—which is a homogeneous system of equations—as an augmented
matrix, we have

3 =3 3]0 3 -3 3|0 Ly 1 -1 110
3 =3 3|0 —222, 00 00/0] 2—=1]0 000}, (6.7)
6 —6 6|0 7 o 0 0]0 0 000
Hence 1 — x5 + 3 = 0, which implies that x3 = x5 — 21 and so
_fL‘l X1
Ea(-2) = Ty | €ER xy —ao+ a3 =0p = T c T, 10 € R
| L3 Ty — X1
Observing that i
T I 0 1 0
T9 = 0 + 22| = 0 x|+ 1 T2,
_ZEQ — I —I1 T —1 1
we have
1 0
Ea(—=2) = Ol +|1|xe : x1, 220 €R
—1 1
and so it is clear that
1 0
B_y = of, 1
—1 1

is a linearly independent set of vectors that spans F(—2) and therefore must be a basis for
Ea(—2). Notice that the elements of B_, are in fact eigenvectors of A corresponding to the
eigenvalue —2, as are all the vectors belonging to Ea(—2).
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Next, the eigenspace of A corresponding to A = 4 is

Ea(4) = Nul(A — 4I3) = {x € R* : (A — 4I3)x = 0}

1 -3 =3 3||x 0
=S|z |eR*: | 3 =9 3|[zz|=1]0
.733_ 6 —6 0 T3 0
Applying Gaussian Elimination to the corresponding augmented matrix yields
-3 =3 3]0 [-3 -3 3]0 -3 3010
3 -9 3|0 22 0 <12 60| —2Es | 0 12 6| 0.
6 —6 0|0 teom | 0 —12 6|0 —gT2tri—n 0 0 0]0
From the top row we obtain x5 = x1, and from the middle row we obtain x5 = 2z, and thus

x3 = 2x1. Now,

T 1
Ea(4) = |1 eR) = 1|z 1 €R
2£L'1 2
Clearly
1
B, = 1
2

is a linearly independent set that spans Ea(4) and so qualifies as a basis for Fa(4). The vector
belonging to B, is an eigenvector of A corresponding to the eigenvalue 4, as is any real scalar
multiple of the vector. |

In Example we found in that A + 2I3 is row-equivalent to

1 -1 1
B=[0 0 0f,
0 00

which clearly has rank 1, and so

rank(A + 2I3) = rank(B) = 1
by Theorem Then by the Rank-Nullity Theorem for Matrices we have
dim(Ea(—2)) = nullity(A + 2I3) = dim(R?) — rank(A + 2I3) =3 — 1 = 2. (6.8)

Then, employing the equation x; — x5 + 3 = 0 obtained at right in (6.7]), we could have easily
obtained the two solutions

1 0
1 and 1
0 1

Since these two vectors in Ea (—2) are linearly independent and we know from that Ea(—2)
has dimension 2, we can conclude by Theorem [3.54|1) that the two vectors must be a basis for
Ea(—2). We mention this here in order to suggest an alternative means of finding a basis for
an eigenspace which makes use of earlier theoretical developments.
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In the next example, for variety’s sake, eigenspaces will be found using Definition directly,
rather than equation (6.1)).

Example 6.20. Find the eigenvalues of the matrix

1 4 -2
A=|-3 4 of,
31 3

and also find a basis for each eigenspace as a subspace of R3.

Solution. Expanding the determinant according to the second row, we have

—1—1 4 -2
Pa(t) = det(A—tI)=| -3 4—¢ 0
-3 1 33—t
4 =2 —1—-t =2
_(_1\2+1/ _1)2+2 -
L A1 A P S TR IS

= —13 + 612 — 11t + 6,

and so
Pa() =0 & t3—6t2+11t —6=0.
By the Rational Zeros Theorem of algebra, the only rational numbers that may be zeros of Pa

are £1, £2, 3 and £6. It’s an easy matter to verify that 1 is in fact a zero, and so by the
Factor Theorem of algebra ¢ — 1 must be a factor of Pa(t). Now,

3 —6t2+11t—6
t—1

=t — 5t + 6,
whence we obtain
t—6t2+11t—-6=0 & (t—1)(t*—-5t+6)=0 < (t—1)({t—2)(t—-3)=0,

and therefore P (t) = 0 if and only if t = 1,2,3. By Theorem the eigenvalues of A are
A=1,2,3.
The eigenspace of A corresponding to A = 1 is

T -1 4 2|z x
Ea(l)={xeR*: Ax=x}={|y|eR®: -3 4 Of|ly|l=|y
z -3 1 31|z z

The matrix equation yields the system of equations

—r 44y —2z=x
—3x + 4y =y
—3r+ y+3z==z2
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or equivalently

—x+2y—12=0
-+ vy =0
—3z+ y+2z=0

Apply Gaussian elimination on the corresponding augmented matrix:

12 -11]0 1 2 —11]0 1 2 —11]0
—1 1 0|0 =&tz ) g -1 1o 2ol o9 -1 10,
31 2|0 “Pnfrsors 0 -5 510 0 0 01]0

so from the second row we have y = z, and from the first row we have x =2y — 2 =22 — 2z = 2.
Replacing z with ¢, so that x =y = 2z = ¢, we have

t 1
Ea(l)=<|t]|:teRy=<[1]|t:teR
t 1
From this we see that the set
1
By = 1
1
is a basis for Fa(1).
The eigenspace of A corresponding to A = 2 is
T -1 4 2|z 2x
Ea(2)={xeR*: Ax=2x}=<{|y|eR’: |-3 4 0]||ly|=]|2y
z -3 1 3|z 2z
The matrix equation yields the system of equations
—3x+4y —22=0
—3r + 2y =0
—3r+ y+ 2=0
Apply Gaussian elimination on the corresponding augmented matrix:
-3 4 =210 -3 4 =210 3yt -3 4 =210
—3 2 0|0 .t g —2 20| -2 0 —2 210,
-3 1 1]0] ™™ 1 0 -3 3]0 0 0 0]0

so from the second row we have y = z, and from the first row we have
4 2 4 2 2

T=-y—-—z=-z2——-—2=—2.
3 3 3 3 3
Hence
22/3 2/3
Ea(2) = z | zeRp = 1 |z:2z€eR
z 1
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If we replace z with 3¢, we obtain an equivalent rendition of Fs, that features no fractions:

2
Ea(2) = 3[t:teR
3
The set
2
By = 3
3

is a basis for Fj.
Finally, the eigenspace of A corresponding to A = 3 is

x -1 4 =2||=z 3x
Ea(3)={xeR*:Ax=3x}=<¢|y|€R*: |-3 4 O||ly|=13y
z -3 1 3|z 3z
The matrix equation yields the system of equations
—4dr+4y —22=0
—3r+ vy =0
=3+ y =0
Once more we apply Gaussian elimination to the augmented matrix:
—4 4 =210 -2 2 —=11|0
—3 1 oo%—?)l 01]o0],
-3 1 010 2mn 00 0]0
so y = 3x and —2x + 2y — z = 0, where
—2r4+2y—2=0 = z=-20+4+2y = z=A4z.
Therefore, replacing x with ¢ so that y = 3t and z = 4¢, we have
.
Ea(3)=<|[3|t:teR
4_
The set )
1
Bg - 3
4
is a basis for Fa(3). |

Example 6.21. Find the eigenvalues of the matrix

2 3
A=l

and also find a basis for each eigenspace as a subspace of C2.
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Solution. We have

Pa(t) = det(A — tI,) =

2—t 3
-1 4-1

‘:t2—6t+11,

and so
Pa(t)=0 & ?—6t4+11=0 < t=3+iV2

That is, A has two complex-valued eigenvalues. Let A = 3 —iv/2. The eigenspace corresponding

T e amsg = {[2]ee [ 2 3]

2 3 21| )\Zl
-1 4 Z9 o )\ZQ
corresponds to the system of equations

(2 — )\)21 + 322 =0
—Z1 + (4 — /\)ZQ =0

Now,

We apply Gaussian elimination to the augmented matrix,

2— A 3 0 14T -1 4—-—X10 2=N)ri+ro—ra -1 4-X10
—_— _—
-1 4-X10 2—A 3 0 ’

observing that
2-N@A—-N)+3=(N-6A+8)+3=(3—iv2)"—6(3—iv2)+11=0.
Thus
1 = (— 1 —i\/E)ZQ,

and so we obtain

B ={[T1 V2] e} [TV i sec),

Z9 1
where for simplicity we replace z; with z in the end. Hence the eigenvector

i

corresponding to the eigenvalue 3 — 7v/2 constitutes a basis for the eigenspace Fa ().
The analysis of the other eigenvalue 3 + iv/2 is quite similar (with eigenspace also of
dimension 1) and so is left as a problem. |

Example 6.22. We will show that, for all n € N, if A € F is given by

[0 0 0 --- 0 —ap ]
100 -+ 0 —a
010 -+ 0 —a
000 -+ 0 —ap-2

000 - 1 —ap]
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then
Pa(t) = (=1)"(ag + art + - -+ + a,_1t" 1 +1). (6.10)
In the case when n =1 we take A = [—ag], whereupon we obtain
PA(t) = detl(A — tIl) = detl([—ao — t]) = —Qp — t= (—1)(&0 + t)

This establishes the base case of an inductive argument. Fix n € N, and suppose any matrix of
the form has characteristic polynomial (6.10)); that is, det, (A — ¢I,,) is given by

-t 0 0 --- 0 —ag
1 —t 0o --- 0 —ay
o 1 —t --- 0 —ay |
S : = (=1)"(ao + art 4+ -+ + ap_1t" " +t").
o o0 0 --- —t —Qy_9
o o0 0 --- 1 —a, | —t
Now, define A € F(r+Dx(n+1) hy
[0 0 O 0 —ag ]
010 0 —as
A= o o
000 0 —a,_
0 0 0 1 —a, |
SO
[—t 0 0 - 0 —ag ]
1 —t 0 0 —aq
0 1 —t 0 —ay
A. - tIn+1 = . :
0 0 0 -+ —t —ay,
i 0 0 0o --- 1 —a, — t]
Letting B = A —t1,,,1,
n+1
PA(t) = det, 1 (B) = > _(—1)"ay; det,, (By;)
j=1

= —tdetn(BH) + (—1)"”(—@0) detn(Bl(n+1)),

where
[—t 0 0 - 0 —aq, | [1 —t 0 07
1 -t 0 - 0 —ay 0 1 —t 0
0 1 —t 0 —a3 0 0 1 0
B11 = . and Bl(n+1) = . . . .
0O 0 O —t  —a,- 0O 0 O —t
0 0 0 1 —a,—t] 0 0 0 1
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Clearly det,,(B1(n+1)) = 1, and by the inductive hypothesis we have

det,(B11) = (=1)"(a1 + agt + - - - + a,t" ' + "),

so that
Pa(t) = —t(=1)"(a1 + ast + -+ + aut" " + ") — (—=1)"a
= (1) art + ast® + -+ + apt™ + ") 4 (—1)" g
= (=)™ ao + axt + -+ + apt” + "),
as desired. n

PROBLEMS

1. For each of the 2 x 2 matrices below, do the following:
(i) Find the characteristic equation.
(ii) Find all real eigenvalues.
(iii) Find a basis for the eigenspace corresponding to each real eigenvalue.

(%) [g _ﬂ (b) {2 g} (©) [‘f ‘Z] () {8 8}

2. For each of the 3 x 3 matrices below, do the following:
(i) Find the characteristic equation.
(ii) Find all real eigenvalues.
(iii) Find a basis for the eigenspace corresponding to each real eigenvalue.

401 3 0 -5 5 6 2
(a) |-2 1 0 (b) |+ -1 0 (¢) [0 —1 -8
-2 0 1 1 1 -2 1 0 -2

3. For each of the 4 x 4 matrices below, do the following:
(i) Find the characteristic equation.
(ii) Find all real eigenvalues.
(iii) Find a basis for the eigenspace corresponding to each real eigenvalue.

00 20 10 -9 0 0
10 10 4 -2 0 0
@) 19 1 _9 ¢ ™) 1o o0 -2 _7
00 01 0 0 1 2
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6.3 — APPLICATIONS OF THE CHARACTERISTIC POLYNOMIAL

Recall that P, (F) denotes the set of polynomials of degree n with coefficients in F. That is,
forn e W,

Pn(F) = {Zakazk:ao,...,an € F and an#()}.
k=0

We regard 0 to be the polynomial of degree —1 and define P_;(F) = {0}. If F is an infinite field
such as R or C, it is common to treat a polynomial as a function f :F — FF given by

flz) = Z apz”
k=0

for all x € [F, in which case it is called a polynomial function. For n > —1, a polynomial function
p is said to have degree n if f(z) € P,(F), in which case we write deg(p) = n. Thus, we may
just as well regard P, (IF) as the set of all polynomial functions of degree n, so that it makes as
much sense to write f € P,(F) as f(z) € P,(F). Finally, we define

P(F) = | Pu-r(F).

In what follows we will have need of the following theorem, which is proven in §5.1 of the
Complex Analysis Notes|

Theorem 6.23 (Fundamental Theorem of Algebra). If

p(2) = ap2™ + Q12" - a1z + ag

15 a polynomial function of degree n > 1 with coefficients aq, . ..,a, € C, then there exists some
29 € C such that p(zp) = 0.

Theorem 6.24 (Division Algorithm for Polynomials). Let f € P,(F), and let g € P,,(F)
for some m > 0. Then there exist unique polynomial functions q and r such that

f(@) = q(z)g(x) + r(z)
for all x € F, where deg(r) < m.

Theorem 6.25 (Factor Theorem). Let f € P,(F) for some n > 1, and let ¢ € F. Then
f(e) =0 if and only if x — c is a factor of f(x).

Lemma 6.26. Suppose P(t) = [p;;(t)], € F"*™ is such that p;; is a polynomial function for all
l<ij<n. If

0, i#]

d i) <
eg(pj) > {17 i=j

then deg(det, (P(t))) < n.


http://faculty.bucks.edu/erickson/complex_analysis/complex5.pdf
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Proof. The statement of the lemma is clearly true in the case when n = 1. Suppose that it is
true for some arbitrary n € N. Let P(¢) = [p;;(¢)]n+1. Then, expanding along the first row, we

have
n+1

detu 1 (P() = 3 (—1)py () det, (P (1),
j=1
For each 1 < j < n + 1 we find that the n x n submatrix P,; is such that all non-diagonal
entries are degree 0 polynomial functions (i.e. constants), and all diagonal entries are polynomial
functions of either degree 0 or degree 1. Thus deg(det,,(P1;)) < n by our inductive hypothesis,
and since pi;(t) is a constant for 2 < j < n + 1, it follows that

deg((—1)""py;(t) det,(Py;(t))) < n
for 2 < j7 <n+ 1. In the case when j = 1 we have
(=1)"p;(t) detn(P1;(t)) = pua(¢) det (Pra (1)),
where p;(t) has degree at most 1, and det,,(Py1(¢)) has degree at most n. Hence
deg(pn(t) detn(Pn(t))) <n+1,

and therefore deg(det,, (P(t))) < n+ 1 since det,,+1(P(t)) is the sum of polynomials of degree at
most n + 1. Thus the lemma holds true in the n + 1 case, and so it must hold for all n € N by
induction. |

Proposition 6.27. If A € F**" then deg(Pa) = n and the lead coefficient of Pa is (—1)".

Proof. In the case when n = 1 we have A = [a], so that
Pa(t) = dety([a] — [t]) = dety([a —t]) =a—t = —t +a,

and we clearly that deg(Pa) = 1 and the lead coefficient of Py is (—1).
Suppose the proposition is true for some n € N. Let A = [a;j],+1 € FO+HDX0+) " and define
P(t) = A —tL,4; so that P(t) = [p;;(t)]n+1 with

1, i=j
Now,
n+1
PA(t) = detni1 (P(1)) = Y (1) pu(t) deta (P (1)),
k=1
where for each k we have Py (t) = [pg,i;(t)]n such that

0, v7#7J
deg(pr.ij) < {1 : 4 :
=1
and so deg(det,(P1x(t))) < n by Lemma Since pyx(t) is a constant for 2 < k <n+ 1, it
follows that

deg((—1)"**p1(t) det,, (P11(t))) < m
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for 2 <k <n-+1. In the case when £ = 1 we have

(= 1) p1(t) dety (P (t)) = pua(t) ety (P11(t)),
where

det, (P11(t)) = det, (A1 — tI,,) = Pa,, (1)
has degree n and lead coefficient (—1)™ by our inductive hypothesis. That is,
det, (P11(t)) = (—=1)™" + b1 t" "+ + byt + bo
for some b,,_1,...,by € F, and since py1(t) = a1; — ¢t we obtain

pua(t) dety (P11(t)) = (=t + a11) ((—1)"t" + buat™ " + - - 4 byt + by)
= (=)™ pe " et e

for some ¢, ...,co € F. Hence Q(t) = p11(t) det,,(P11(¢)) has degree n + 1 with lead coefficient
(—1)™*!. Since Pa(t) = det,;1(P(t)) is the sum of Q(t) with other polynomials of degree at
most n, it follows that P likewise has degree n + 1 with lead coefficient, (—1)"*1.

We conclude by the principle of induction that the proposition holds for all n € N, which
finishes the proof. |

Corollary 6.28. If V' is a nontrivial finite-dimensional vector space over F and L € L(V'), then
deg(PL) = dim(V) and the lead coefficient of Py, is (—1)3m(V),

Proof. Suppose V is a nontrivial finite-dimensional vector space over F and L € L(V). Let B be
any basis for V. Since [L]z € Fam(V)xdim(V) 1y Proposition we have deg(Py,) = dim(V)
and the lead coefficient of Py, is (—=1)". Now, P = Py, by Definition [6.16, and so the proof
is done. |

Proposition 6.29. Let n € N.

1. If A e C™™, then 1 < |o(A)| < n.
2. Let V be an n-dimensional vector space over C. If L € L(V), then 1 < |o(L)| < n.

Proof.

Proof of Part (1): Let A € C"*™. By Proposition the polynomial function P, is of degree
n € N, so by the Fundamental Theorem of Algebra P has at least one zero in C, and by the
Factor Theorem P has at most n zeros in C. Since, by Theorem [6.18 A is an eigenvalue of
A if and only if Pa(A) = 0, it follows that A possesses at least one and at most n distinct
eigenvalues. That is, 1 < |o(A)] < n.

Proof of Part (2): Suppose L € L(V), and let B be an ordered basis for V. Then [L]z € C"*",
and by Part (1) we have 1 < |o([L]5)| < n. Now, because A is an eigenvalue of L if and only if
it is an eigenvalue of [L]g by Proposition |6.14] we conclude that 1 < |o(L)| < n. [
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Definition 6.30. If A € F"*", then the algebraic multiplicity aa(\) of an eigenvalue
A€ o(A) is given by

aa(N) = max{j: (t — N is a factor of Pa(t)}. (6.11)

The geometric multiplicity of \ is ya(\) = dim(FEa ().
If L € L(V), then the algebraic multiplicity ar()\) of an eigenvalue A € o(L) is given by

ar(A) = o),

where [L] denotes the matriz corresponding to L with respect to any basis for V.. The geometric
multiplicity of \ is v, (\) = dim(EL()N)).

Proposition [6.15] ensures that the algebraic multiplicity of any eigenvalue A of an operator
L € L£(V) is independent of the choice of basis for V. That is, oz, () is invariant under change
of bases.

It must be stressed that if a matrix A is regarded as being an element of F"*"  then in
general we consider only eigenvalues that are elements of F. Thus, if A € R"*" then ¢(A) C R,
and we discount any value in C \ R as being an eigenvalue. A similar convention is observed in
the case when L € L(V'), where V is given to be a vector space over the field F; that is, we take
o(L) CF.

An easy consequence of the Factor Theorem is that the multiplicities of the distinct complex
zeros of an nth-degree polynomial function must sum to n. Thus, since the characteristic
polynomial of a matrix A € C*™*" has degree n by Proposition [6.27], it readily follows from
Theorem that the sum of the algebraic multiplicities of the distinct complex eigenvalues
A, ...y Ay of A must be n:

Zm:&A()\k) = n. (6.12)

It is in this sense (i.e. counting multiplicities) that it can be said that an n x n matrix A with
complex-valued entries has “n eigenvalues,” which we may sometimes denote by Ay, ..., A,. The
same applies to any linear operator L on an n-dimensional vector space over C.

Theorem 6.31. If A € C"*" has distinct complex eigenvalues Ay, ..., Ay, then

det, (A) = [T A2
k=1

Proof. Suppose A € C"*" has distinct complex eigenvalues Ay, ..., A\,,. Then Ay,... A\, are
precisely the zeros of Po by Theorem [6.18] and so

PA(t) = (—1)n(t . )\l)aA(/\l) .. (t _ )\m)aA()\m)
by the Factor Theorem and (6.11]), along with Proposition which tells us that the lead

coefficient of Pp is (—1)". Now, since
det,(A) = det, (A — 01,,) = Pa(0),

from (6.12) we obtain
det,(A) = (—1)"(=X)aG) . (=), )eaGm)
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_ (_1)n(_1)aA(A1)+--~+aA(>\m))\<11A(>\1) L )\%A(/\m)

= (=1)*(=1)"AeA) L yealm)
ACARD oA ()

as desired. ]

Proposition 6.32. Let A € F™*". If X is an eigenvalue of A, then it is also an eigenvalue of
AT

Proof. Suppose that A\ € F is an eigenvalue of A. Then Pa(\) = 0 by Theorem [6.18, and thus

det, (A — AL,) = 0.

Now, by Theorem
det,, ((A — AL,)" ) = det, (A — AL,),
and since
(A=XL)" =AT Al = AT — )L,
it follows that
det, (AT — \I,) = 0.

That is, Pp7(A) = 0, and so by Theorem we conclude that ) is an eigenvalue of AT. W
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6.4 — SIMILAR MATRICES

Definition 6.33. Let A,B € F™*". We say A is similar to B, written A & B, if there exists
an invertible matriz Q € F™" such that B = QAQ™!.

Theorem 6.34. The similarity relation ~ is an equivalence relation on the class of square
matrices over [F.

Proof. For any A € F™" we have A = I, AL, so that A & A and hence < is reflexive.
Suppose that A & B. Then B = QAQ™! for some invertible matrix Q, and since

B-QAQ' = A=Q'BQ = A=Q'B(Q)",

it follows that B &~ A and therefore < is symmetric.
Suppose A <~ B and B £ C, so that
B=QAQ' and C=PBP!

for some invertible matrices Q and P. Then by the associativity of matrix multiplication and
Theorem [2.26] we obtain

C=P(QAQ P '=(PQAQ 'P ) =(PQAPQ,
which shows that A & C and therefore ~ is transitive. [ ]

Remark. Because the relation & is symmetric, when two matrices A and B are said to be
similar it does not matter whether we take that to mean A ¥ B (i.e. B=QAQ ') or BX A

(ie. A=QBQY).

Proposition 6.35. Suppose that A and B are similar matrices.

1. A s invertible iof and only if B is invertible.
2. det(A) = det(B).

3. Pon = Pg.

4. o(A) = o(B).

5. rank(A) = rank(B).
Proof.

Proof of Part (1): If A is invertible, then there exists an invertible matrix Q such that
B = QAQ™!, and therefore B is invertible by Theorem The converse follows from the
symmetric property of <.

Proof of Part (2): There exists an invertible matrix Q such that B = QAQ™!. Now,
det(B) = det(QAQ ™) = det(Q) det(A) det(Q ™) = det(Q) det(A)

by Theorems and [5.24]

1
3et(Q) = det(A)
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Proof of Part (3): There exists an invertible matrix Q such that B = QAQ™!, and so
Pg(t) = det(B — tI) = det(QAQ ™' —tQIQ ") = det (Q(A —t1)Q ")
= det(Q) det(A — tI)det(Q ) = det(Q) det(A — tI) det(Q) "
= det(A — tI) = Pa(t)

for any t € F. Therefore Py = Pg.

Proof of Part (4): Applying Theorem and Part (3), we have
ANeog(A) & PA(N)=0 & Pg(\)=0 < Xeo(B),
and therefore o(A) = o(B).

Proof of Part (5): This is an immediate consequence of Theorem [4.47|(4). |

The following proposition is a direct consequence of Corollary and will prove useful
later on.

Proposition 6.36. Suppose V' is a finite-dimensional vector space and L € L(V). If B and B’
are ordered bases for V', then [L|g and [L]g are similar matrices.

Proposition 6.37. Suppose that V' is a finite-dimensional vector space, L € L(V), and
A € F™". [f there is an ordered basis B for V such that [L]g ~ A, then there exists a basis B’
such that [L]g = A.

Proof. Suppose B = (vy,...,v,) is an ordered basis for V' such that [L|s ~ A. Thus there
exists an invertible matrix

Q= [Cb‘j]n = [Oh qn]
such that [L]s = QAQ™!. Let B’ = {v],..., v/} be the set of vectors for which
V;g = q1kV1 + -+ qnkVn

for each 1 < k < n, so that

a1k
Vils=1| 1 | = -
Qnk
Since Q is invertible, by the Invertible Matrix Theorem the column vectors qi,...,q, of Q
are linearly independent, which is to say [v/]z, ..., [v,]s are linearly independent vectors in F”.

Thus, since the mapping %1 : " — V (the inverse of the B-coordinate map) is an isomorphism
and

o5 ([Vils) = Vi

for 1 < k < n, it follows by Proposition that v/,..., v/ are linearly independent and

/

therefore B’ is a basis for V. We give it the natural order: B’ = (v{,...,V]).
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Now, by Theorem [4.27]

Low = [[vils - Wils| =[a - @] =Q
and so
Ll = QAQ ' =IzpAl.5 = I Al gy
by Proposition [4.31] Finally, by Corollary we obtain
A =Ty [Lllsg = [Llg
as desired. |

We will often have need to raise matrix expressions of the form QAQ™! and Q 'AQ to an
arbitrary positive integer power, for which the following proposition will prove invaluable.

Proposition 6.38. If A, Q € F™*" and Q is invertible, then
(Q'AQ)" = Q'A*Q (6.13)

and
(QAQ 1) = QA*Q™! (6.14)
for all k € N.

Proof. First we prove that (6.13)) holds for all & > 1. Certainly the equation holds when
k = 1. Suppose it holds for some arbitrary & > 1. Then, exploiting the associativity of matrix
multiplication, we obtain

(QTAQ)" = (Q'AQ)N(QT'AQ) = (QT'A'Q)(QT'AQ)
=Q'AM(QQ HAQ =Q AN ()AQ =Q'ATAQ
=Q(A"A)Q=Q'AMQ,

which shows the equation holds for £ + 1. By the Principle of Induction we conclude that (6.13)
holds for all k£ € N.

Equation (6.14)) is a symmetrical result that is easily derived from (/6.13]) merely by replacing
Q with Q1. |
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6.5 — THE THEORY OF DIAGONALIZATION

Definition 6.39. Suppose V' is a nontrivial finite-dimensional vector space over F, and let
L € L(V). An ordered basis for V consisting of the eigenvectors of L is called a spectral basis
for L. We say L is diagonalizable if there exists a spectral basis for L. Any procedure that
finds a spectral basis for L is called diagonalization.

A matrix A € F™" is diagonalizable in F if it is similar to a diagonal matrix
D e F».

Theorem 6.40. Suppose V' is a finite-dimensional vector space over F, L € L(V), and
AL, oy A are the distinct eigenvalues of L. Then the following statements are equivalent.

1. L is diagonalizable.

2. There exists some ordered basis B for V' such that [L]|p is a diagonal matriz.
3. There exists some ordered basis B for V' such that [L]s is diagonalizable in .
4.V decomposes as

5. The dimension of V s

dim(V) = dim(Ey(\)) + -« + dim( By (An))
Proof.
(1) = (2): Suppose L is diagonalizable. Then there exists some ordered basis B = (vi,...,V,)

consisting of eigenvectors of L, so that L(vy) = A\yvy for each 1 < k < n. By Corollary the
matrix corresponding to L with respect to B is

L = [[Lv0)] 5 -+ [Eva)]g] = [avily o [Aaval o]

é 8 A 0
:[/\1[V1}B ,\n[vn]B]: ML L] ] = ,

: ' 0 A

0 1 n

and so we see that [L]z is a diagonal matrix as desired.

(2) = (1): Suppose there exists some ordered basis B = (vy,...,v,) such that [L|z € F"*" is a

diagonal matrix:

dy 0

0 dy,

Since [Vi]g = [0ik|nx1 for each 1 < k < n, we have
[L]s[Vi|s = di[Vi]s,

and so dy, is an eigenvalue of [L]z with corresponding eigenvector [vi|s. By Proposition we
conclude that, for each 1 < k < n, dj is an eigenvalue of L with corresponding eigenvector vy,
and therefore B is an ordered basis for V' consisting of eigenvectors of L.
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(2) = (8): This is trivial since equal matrices are similar matrices.

(3) = (2): If there is an ordered basis B such that [L]z is similar to a diagonal matrix D, then
by Proposition there is an ordered basis B’ such that [L]z = D.

(1) = (4): Suppose L is diagonalizable, so there is an ordered basis B = (vy,...,V,) consisting
of eigenvectors of L. We may take the order to be such that vy,...,v, have the distinct
eigenvalues Ay, ..., A\, Let Apiq1, ..., A, be the eigenvalues corresponding to v, 11, ...,v,. For
any u € V there exist ¢q,...,¢, € F such that u=c¢;vy +--- + ¢,v,, and so
L(u) = chL(Vk) = Z Ck/\ka. (615)
k=1 k=1
Now,

EL()\k) = {V eV L(V) = /\kV}
is the eigenspace of L corresponding to \g, and since
A'm—‘,—lw'wAn S {/\17-"7>\m}7

it is clear that we may recast (6.15) as
L(u) = Zcﬁc)\kv;
k=1
by combining terms with matching eigenvalues. For each 1 < k < m we have
L(cyvi) = ¢ L(vi) = v = Ae(civi),

so that ¢, v), € EL()\), and thus

n m

u = chvk = ZC;“V;“ - ZEL()\k)
k=1

k=1 k=1 —
This establishes that V = EL (A1) + -+ + Er(A\n).

Next, suppose that
m m
Z u, =u and Z u, =u
k=1 k=1

for uy,uj, € EL(\;). Then

NE

(up —uy) =0, (6.16)
k=1

where uy, — u, € EL(\) for each 1 <k < m. Suppose that uy, — uﬁcj 2 0 for some values

1<k <ky<---<ky<m,
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with uy —uj, =0 for all & ¢ {ky,...,ke}. Then (6.16) becomes
¢

Z(ukj —u, ) =0. (6.17)

j=1
However, each uy; — uﬁcj (being nonzero) is an eigenvalue of L with corresponding eigenvalue
Ak;, and since the eigenvalues Ay, ..., A, are distinct, it follows by Theorem that the set

l
{uk1 —u, ..., Uy, —uze}

is linearly independent. Now (/6.17]) forces us to conclude that uy; — u}cj =0 for some 1 < j </,
which is a contradiction. We must conclude that u,y —uj, = 0 for all 1 <k < m, or equivalently

/ !/
u; =uj,... U0, =u,.

Hence any u € V has a unique representation u; + - - - + u,, such that each u is an element of
Ep (M), and therefore V = EL (A1) @ -+ - @ EL(A\n).

(4) = (5): That

V=@E.() = dim(V)=> dim(EL(\))
k=1 k=1
is an immediate consequence of Theorem [4.45|

(5) = (1): Suppose that
dim(V) = dim(Ey(\) + - + dim(Ep ().
with dim(Ep()\;)) = n; for each 1 < i < m. Let
B =A{vi,...,Vin, }

be a basis for E();). Suppose

m N, ni Nm
Z Z QijVi; = Z a15Vij + -+ Z AmiVmj = 0, (618)
j=1 Jj=1

i=1 j=1
where ‘
v, = Zaijvij S EL()\Z)
j=1
and so
V1+"'+Vm:0' (619)

For each 1 < ¢ < m the nonzero elements of E1()\;) are eigenvectors of L with corresponding
eigenvalue \;, and since Ay, ..., A, are distinct we conclude by Theorem[6.8|that if vy, ..., v,, # 0,
then vy, ..., v,, are linearly independent. However, implies that vq,...,v,, are not linearly
independent, and so at least one of the vectors must be the zero vector. In fact, if we suppose
that

Vigs -3 Vi, €V, Vit
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are the nonzero vectors, then (6.19) becomes
Vk1+"'+vkg =0

and we are compelled to conclude—just as before—that at least one term on the left-hand side

must be 0! Hence
n;
Z aijvl-j =V, = 0
j=1

for all 1 <7 < 'm, and since v;1, ..., Vyy,, are linearly independent it follows that
aﬂ:O,...,ami =0

for all 1 <4 < m. It is now clear that (6.18)) admits only the trivial solution, so that the set

i=1

of eigenvectors of L is linearly independent; and because
B =S 1B =S ni =3 dim(Er (\)) = dim(V)
i=1 i=1 i=1

(Proposition [6.7 ensures that B, N B; = & for any @ # j), Theorem 3.51(1) implies that B must
in fact be a basis for V' consisting of eigenvectors of L. Assigning any order to B that we wish,
we conclude that L is diagonalizable. |

From the details of the proof of Theorem (specifically that the first statement implies
the second statement) we immediately obtain the following result.

Corollary 6.41. Suppose V is a finite-dimensional vector space over F. If L € L(V) is
diagonalizable, B = (v1,...,vy,) is a spectral basis for L, and Ay, is the eigenvalue corresponding
to eigenvector vy, then [Llg € F™™ is a diagonal matriz with kk-entry A, for 1 <k <mn. That
is, [L]p = diag [)\1, . /\n].

Definition 6.42. A polynomial function p € P, (F) splits over I if there exist ¢,ay,...,a, € F
such that

p(t) = c]J(t — ax)
k=1
forallt € F.

Proposition 6.43. Suppose V' is a finite-dimensional vector space over F. If L € L(V) is
diagonalizable, then Py splits over F.

Proof. Suppose L € L£(V) is diagonalizable, with dim(V') = n. Let B be a spectral basis for L,
so that [L]z is a diagonal matrix

d1 0
[L]s = '
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for some dy,...,d, € F by Theorem [6.40] Now,

dy —t 0 n
Pp(t) = P (t) = det,([L]g — t1,) = = (=1)" [t - dw),

and therefore P, splits over F. |

The first part of the following theorem tells us that the algebraic multiplicity of an eigenvalue
of a diagonalizable linear operator on a finite-dimensional vector space is always equal to its
geometric multiplicity.

The following theorem will, in the next section, show itself to be the workhorse that yields a
practical method for diagonalizing linear operators and square matrices alike.

Theorem 6.44. Suppose V' is a finite-dimensional vector space over F, L € L(V), and

A,y ooy A are the distinct eigenvalues of L. Assuming that Py, splits over IF, then:

1. L is diagonalizable if and only if op, (M) = vo(Ag) for all 1 < k < m.

2. If L is diagonalizable and By is a basis for Ep(\) for each 1 < k < m, then |J,-_, By, is a
spectral basis for L.

Proof.
Proof of Part (1). Let n = dim(V'). Suppose that

max{j : (t — \g)’ is a factor of Pp(t)} = ap(Ae) = vo (M) = dim(EL(Ag))

for each 1 < k < m. Then

m

Pi(t) = p(t) H(t — ) Bm(EL ()
k=1
for some polynomial function p for which A, ..., \,, are not zeros. However, P, splits over FF

by hypothesis, and so deg(p) is either 0 or 1. If deg(p) = 1, so that p(t) = ¢(t — \) for some
A, ¢ € F, then Pr(A\) = 0 and we conclude that X\ # Ay, ..., A\, must be an eigenvalue of L. This
is a contradiction since Ay, ..., A, represent all the distinct eigenvalues of L. Hence deg(p) = 0,
which is to say p(t) = ¢ for some ¢ € F and we have

m

Pp(t) = c [ J(t = Ap)tmPe), (6.20)
k=1

Now, since deg(Pr) = n by Corollary it follows from (|6.20]) that

> " dim(EL(A)) = n = dim(V),
k=1
and therefore L is diagonalizable by Theorem

Suppose that L is diagonalizable, and let B = (vy,...,Vv,) be a spectral basis for L such
that L(vy) = A\yvy for each 1 < k < n. By Corollary [6.41}, [L]g € F"*" is a diagonal matrix
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with kk-entry Ag:

A1 0
0 An
Let rp = ap(Ag) for each 1 < k <'m; that is,

re = max{i : (t — \)" is a factor of Pr(t)},

and so
A —t 0
Pp(t) = det,([L]p — tL,) =
0 Ap — t
H)\k—t: D" ] =) = (=" ]t = M) (6.21)
k=1 k=1 k=1
The last equality holds since A\ € {\1,..., A\, } for all 1 < k < mn, so there can be no factor of
Pp(t) of the form ¢ — X such that A\ # Ay,..., \,,. Corollary [6.28 and (6.21)) now imply that
dim(V) = deg(P) = ) 1. (6.22)
k=1

From ([6.21)) we also see that, for each 1 < k < m, the scalar A\ must occur precisely r; times
on the diagonal of [L]z; that is, for each 1 < k < m there exist

1<y <ig <~ <4, <n
such that

Ny =iy ==\

Zrk

= Ak,
and therefore
S ={Vi,,Vig, -, Vi, } € Er(Ag).
Now Theorem [3.56(2) implies that
dim(EL(A)) > 7 (6.23)

since Span(S) is a subspace of Er(\x) of dimension ry.
Since L is diagonalizable,

dim(V) =) dim(EL (M) (6.24)
k=1
by Theorem |6.40, If we suppose that dim(E), (L)) > r; for some 1 < j < m, then by equations

(6.24), (6.23), and (6.22]), in turn, we obtain

dim(V Zdlm (Er(\)) Xm: ry, = dim(V
k=1

which is an egregious contradlctlon. Hence dim(FEp(M\g)) <7 for all 1 < k < m, which together
with (6.23]) leads to the conclusion that

ar(A) =, = dim(EL (M) = vo(Ar)
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forall1 <k <m.

Proof of Part (2). Suppose that L is diagonalizable and By is a basis for Ep()\) for each
1 < k < m. Statement (5) of Theorem is true, and in the proof that statement (5) implies
statement (1) we immediately see that B = |J;-_, By, is a basis for V' consisting of eigenvectors
of L. That is, B is a spectral basis for L. |
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6.6 — DIAGONALIZATION METHODS AND APPLICATIONS

In general, if a square matrix A is given to be in F™*" then to say A is “diagonalizable”
means in particular “diagonalizable in F.”

Theorem 6.45 (Matrix Diagonalization Procedure). Let A € F"*" have distinct eigen-
values i, ..., Ay, with By a basis for Ea(X\) for each 1 < k < m. If Pa splits over F and
aa(Ar) = va(Ag) for each k, then A is diagonalizable in F with diagonal matrizc D € F™*™ given

by

D = I.zAl;,
where € is the standard basis for F" and B = (vy,...,v,) is an ordered basis formed from the
elements of | J;—, Bi. Therefore
A= [Vl e Vn]diag [,ul, . ,un] [Vl e Vn}_l , (6.25)

where . is an eigenvalue corresponding to vy for each 1 < k < n.

Proof. Suppose Pa splits over F, and aa (A;) = ya(Ax) for each 1 < k < m. Define L € L(F")
by L(x) = Ax in the standard basis £, which is to say [L]¢ = A. It is immediate that Ay,..., Ay,
are the distinct eigenvalues of L, and since P, = Pa by Definition [6.16] it follows that P, splits
over F. By Definition ar(Ax) = aa(Ag) for each k, and since EL (M) = Ea(A),

Y (Ar) = dim(EL(A)) = dim(Ea (M) = va (M)

Hence oy, (A\y) = v (M) for all 1 < k < m, and so L is diagonalizable by Theorem [6.44]1). Since
each By that is a basis for Fa(\x) is also a basis for Fp(\;), by Theorem [6.44{2) the set

B=|]B
k=1
is a spectral basis for L. We order the elements of B, where |B| = n since B is a basis for ",
so that B = (vyq,...,V,) is an ordered basis for . Then D = [L|z is a diagonal matrix by

Corollary [6.41], and by Corollary
ISBAIEé = IEB[L]SIEé =[Llz=D

as desired.
To obtain ([6.25)), observe that if py is the eigenvalue corresponding to eigenvector vy for
each 1 < k < n, then

D=[L]z= diag[,ul, o ,,un]
by Corollary , and so from D = ISBAIEé we having, recalling Proposition and Theorem

p

A =TDLey = Ie diag[pu, ..., pin] I
-1
= [vile o [vale] diaglun, o] [[vile -+ [vale]

:[vl Vn}diag[ul,...,un”vl Vn} ,
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where the last equality is due to the simple fact that each symbol v, already represents the
E-coordinates of a vector in F", so that [vi]s = vy. [ |

One particularly appealing feature of diagonal matrices is that, for any n € N, their nth
powers are found simply by taking the nth powers of their entries.

Proposition 6.46. If D = [d;;], is a diagonal matriz, then D* = [d], for all k € N.

Proof. The statement of the proposition is certainly true in the case when k = 1. Suppose
it is true for some arbitrary k € N, so that D* = [dk] Since D is diagonal we have d;; = 0
whenever ¢ # j. Fix 1 <14,5 < n. By Definition [2.4] -

[DkHL’j Z d df] =0= di?j+1
if 7 £ j, and
[Dkﬂ} ij DkD Zd df] JJ JJ dfj_l

if i = j. In either case we see that the ij- entry of D*1 s dit! and so DFF = [df],,.
Therefore the statement of the proposition holds for all £ € N by the Principle of Induction
and the proof is done. |

Example 6.47. Determine whether

-1 4 -2
A=|1-34 0
-3 1 3

is diagonalizable in R. If it is, then find an invertible matrix P and a diagonal matrix D such
that A = PDP~!.

Solution. In Example we found that the characteristic polynomial Py splits over R by
direct factorization:

Pa(t) = =t +6t° — 11t + 6 = —(t — 1)(t — 2)(t — 3).

In this way we determined that the eigenvalues of A are 1, 2, and 3, and by inspection we see
that

OéA(l) = OéA(Q) = aA(B) =1.

We also determined a basis for the eigenspace corresponding to each eigenvalue: for eigenspaces
Ea(1), Ea(2), and Ea(3) we found bases

1 2 1
Bl = 1 s 82 = 3 s and Bg = 3 s
1 3 s

respectively. Since |Bi| = |By| = |Bs| = 1, we see that

va(l) =7a(2) = 7a(3) = 1.
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Hence aa (M) = va(A) for every eigenvalue A of A. Therefore A is diagonalizable in R by
Theorem [6.45]

Letting
1 2 1
vi=|1]|, vo=1[3]|, and v3=|3],
1 3 4

then B = (v1,va,Vv3) is an ordered set formed from the elements of 5; U By U B3 which Theorem
m implies is an ordered basis for R®. Now, since eigenvalues 1, 2, and 3 correspond to
eigenvectors vy, Vo, and v, respectively, by (6.25)) we easily find that

A= |:V1 Vo Vg}diag [1,2,3] [Vl Vo Vg]
Thus if we let

121 100
P=[vi vo v3]=[1 3 3| and D=diag[1,2,3]=|0 2 0],
13 4 003
then we have A = PDP ! as desired. |

In Example there are other possible solutions. If we had chosen the ordered basis
(v3, Vg, vy) instead of (vy,va, v3), then we would have

A:[v3 Vo vl}diag[S,Q,l] [V3 Vo Vl] 5

which is to say A = PDP~! for

1 21 300
P=|3 31 and D=|0 2 0f.
4 3 1 0 01

One great use for diagonalization is that it makes it possible to calculate high powers of
square matrices with relative ease, as illustrated in the following example.

Example 6.48. Given

1 4 -2
A=|-3 4 of,
-3 1 3

Find a formula for A”, and use it to calculate A'°.

Solution. From Example we have A = PDP~!, with

1 21 1 00 3 =5 3
P=|13 3|, D=|0 2 0|, P'=|-1 3 —2f,
1 3 4 00 3 0o -1 1
and so by Propositions [6.38] and [6.46| respectively,

1 2 1][1 0 0 3 -5 3
A"= (PDP Y )"=PD"P'=|1 3 3|0 2 0 |[|-1 3 -2
1 3 4({0 0 3| 0 -1 1
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3_2n+1 _5+3.2n+1_3n 3_2n+2+3n
—=13—-3.927 _5+9_2n_3n+1 3_3_2n+1+3n+1
3—3-2" —549.2" —4.3" 3—-3-2"t144.3"

Therefore

(32  —543.21 310 32124310

AV =13-3-2"" —549.20 3" 3_3.2! 43l
_3—3-210 —5+49.210-4.310 3_3.211 4 4.3%10
[ —2045 —52,910 54,956
=|-3069 —167,936 171,006 |,

| —3069 —226,985 230,055

a result far more easily obtained than calculating A'° directly! |

Example 6.49. Determine whether the linear operator L € £(R**?) given by L(A) = AT is
diagonalizable. If it is, then find a spectral basis for L, and find the matrix corresponding to L
with respect to the spectral basis.

Solution. In Example [£.23] we found that the matrix corresponding to L with respect to the
standard basis & = (E11, Eq9, Eoy, Egy) is

[L]e =

[NeNel s
o= OO
o o= O
— o O O

The characteristic polynomial of L is thus

1—-¢t 0 0 0
0O -t 1 0
0 1 -t 0
0 0 01—t

Pp(t) = Py, (t) = dety ([L]e — tLy) = =(t—13t+1),

which makes clear that Py, splits over R, and the eigenvalues of L are +1 with a,(—1) =1 and
(07 L(l) = 3.
Next we find bases for the eigenspaces of L. For the eigenvalue 1 we have
Er(1) = {X e R : L(X) = X},
where

X=L(X) & X=X & [ﬁ ﬂ:{; ﬂ

for x,y, z,w € R, implying that y = z and thus

) ={[7 t]eriy=sf = {[¥ U] spwer].

Letting x = s1, y = s9, and w = s3, we finally obtain

10 0 1 00
EL(l):{[O 0151—1—[1 0:|52+|:O 1]53:51,52,53€R},
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which shows that £ (1) has basis

10 01 00
81:{[0 0}7 L 01’ {0 1}}:{E11,E12+E21,E2z}

and therefore v.,(1) = 3.
For the eigenvalue —1,

Er(-1)={XeR”*: L(X) = -X},
where

-X=LX) & X=X & {:ﬁ —_ﬂ:{g ”i)]

for x,y, z,w € R, implying that x = —x, 2 = —y, —2z =y, and w = —w. Thus r = w = 0, and

z = —y, so that
_J 0y,
Er(-1)= {{—y O} : yE]R}.

Eu(=1) = {[_(1’ é}s : 5 ER},

which shows that F(—1) has basis

01
By = {{_1 0}} = {Ep — Ea1},
and therefore vy, (—1) = 1.

By Theorem [6.44)(1), since P, splits over R, ay(1) = v.(1), and ar(—1) = v,(—1), the
operator L is diagonalizable. By Theorem [6.44|(2) the ordered set

Letting y = s, we obtain

B=DBUDB;= (V1,V2,V3>V4) = (En, Eis + Eoi, Eg, Eqp — E21)

is a spectral basis for L. By Corollary the B-matrix of L is a diagonal matrix with kk-entry
the eigenvalue corresponding to the kth vector vy in B. Since vi = Eq1, vo = Eq5 + Eo, and
vy = Eq are eigenvectors corresponding to 1, and vy = E15 — Eo; is an eigenvector corresponding
to —1, we have

1 00 0
01 0 0
[L]B*O()lo
00 0 —1

It is in this sense that L is “diagonalized” by finding a spectral basis. |
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PROBLEMS

1. The matrix
3 2
a=); 3]

(a) Find the characteristic polynomial of A, and use it to find the eigenvalues of A.

is diagonalizable.

(b) For each eigenvalue of A find the basis for the corresponding eigenspace.
(c) Find an invertible matrix P and a diagonal matrix D such that A = PDP~!.
(d)

2. Determine whether the matrix

7 -15
rel

is diagonalizable in R. If it is, then find an invertible matrix P and diagonal matrix D such
that A = PDP~1.

3. Determine whether the matrix

4 0 4

0 4 4
4 4 8

is diagonalizable in R. If it is, then find an invertible matrix P and diagonal matrix D such

that A = PDP~ 1,

A:

4. Determine whether the matrix
2 0 =2
A=]0 3 0
00 3
is diagonalizable in R. If it is, then find an invertible matrix P and diagonal matrix D such
that A = PDP~1.

6.7 — MATRIX LIMITS AND MARKOV CHAINS



232

6.8 — THE CAYLEY-HAMILTON THEOREM

Proposition 6.50. Let V' be a finite-dimensional vector space over F with subspace W. If W is
invariant under L € L(V'), then the characteristic polynomial of L|yw divides the characteristic
polynomial of L.

Proof. Let C = {vy,..., vy} be a basis for W. By Theorem we can extend C to a basis
B = {Vl7' -5 Vmy Vi1, - - - avn}

for V. Since W is L-invariant, for each v; with 1 < j < m we have L(v;) € W, and so there
exist aij, ..., am; € IF such that
m
VJ) = Z aijvl-.
i=1

For m +1 < j < n we have

n
V]): E Q;5Vi.
=1

Defining

all [P alm al(m+1) e aln a(m+1)(m+1) e a(m+1)n

Am1 - Amm Am(m+1) " OGmn Qn(m+1) to Ann
by Corollary the B-matrix for L is
A B
[L]s = [[L(W)]B [L<Vn)]6] - {O C}

and the C-matrix for Ly is

Lhwle = [[Lhw(v)]le -+ [Ewlvm)le] = [[E0D]e o [Eva)]e| = A.
Now by Example [5.21],

Py (t) = det, ([L]B —tI,) = det, ({A Bl [t{) tI:)_mD

— det, (| ﬂ — detm(A — tL,,) dety m(C — T, )
— tIn m
det,, ([Llw]c — tL,,) det,_p(C — tI,,_,) = Py, det,,_.,(C — tL,,_,,),
|W

and since det,,_,,(C — tI,_,,) is a polynomial we conclude that Py, (¢) divides P (t). [

Definition 6.51. Suppose V is a vector space, and v € V such that v # 0. The L-cyclic
subspace of V generated by L is the subspace

Span{LF(v) : k > 0}.
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As usual we take it as understood that LY = I, the identity operator on V, so that
L) =L/(v)=v.

Proposition 6.52. Suppose V' is a finite-dimensional vector space, v € V' is a nonzero vector,
L € L(V), and W s the L-cyclic subspace of V' generated by v. If dim(W) = m, then the
following hold.

1. The set {v,L(v),..., L™ Y(v)} is a basis for W.

2. If ag,...,am_1 € F are such that

m—1
> alf(v)+ LM(v) =0,
k=0
then )
= o (Ft )
k=0
Proof.

Proof of Part (1). Since v # 0 the set Sy = {v} is linearly independent. For each k > 0 let

Sk =A{v,L(v),..., Lk(v)},
and define

n = max{k : Sy is a linearly independent set}.

Then S, is a linearly independent set and S, 1 = S,, U{L""(v)} is linearly dependent, and by
Proposition it follows that L"™(v) € Span(S,,).
Fix j > 1 and suppose L"*/(v) € Span(S,,), so that there exist ao, ..., a, € F such that
L"H(v) = aLF(v).
k=0
Now,

3

L't (v) = L(L" (v)) = L( akLk(v)) = Z arL"(v)

= agL(V) + a1 L*(V) + - + an 1 L"(V) 4+ a, L"TH(V),

=0

and since aj,_1 L*(v) € Span(S,,) for all 1 <k < n + 1, we conclude that L"™*!(v) € Span(S)
as well. Therefore L¥(v) € Span(S,) for all k > 0 by the principle of induction.
It is clear that

Span(S,) € W = Span{L*(v) : k > 0}.
Fix w € W. Then there exist
ag,...,a, €EF and 0<ky<ki <---<k,
such that
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for some r € W, and since a;L* (v) € Span(S,,) for each j, we have w € Span(S,,) also, and
thus W C Span(S,). It is now established that Span(S,) = W, and since S, is a linearly
independent set, it follows that S, is a basis for W and hence |S,| = dim(W) = m. Therefore

S, ={v,L(v),...,L"(v)} = {v,L(v),..., L™ (v)},
as was to be shown.
Proof of Part (2) Suppose ay, ..., a,_1 € F are such that
L™(V) = —agv — a1L(V) — - -+ — @ L™ (V).

By Part (1) the ordered set C = {v, L(v),..., L™ !(v)} is a basis for W, and so

Lhwle = |[Lw™]e [Lw(LOD], - [Elw @ v)],]
= W) (B - W) [
[0 0 0 -+ 0 —ap ]
100 -+ 0 —a
B 010 -+ 0 —a
000 1 0 —ans
000 -+ 1 —am1]

It follows by Example that the characteristic polynomial of [L|y]c is
(=1)™(ao + art + - -+ + @yt 1),
and therefore .
Py, (1) = (=)™ (Z art® + tm)

by Definition [6.16] |

Definition 6.53. Let f € P,(F) be a polynomial function F — F given by

Ft) =Y axt.
k=0

If V' is a vector space over B, L € L(V), and A € F"*", we define the mapping f(L) and matriz
f(A) by

n n

FL) =) aL* and f(A)=) aA"

k=0 k=0

Some needed basic properties of mappings of the form f(L) and matrices of the form f(A)
which are routine to verify are the following.

Proposition 6.54. Suppose that V is a vector space over F, L € L(V), A € F™" and
f,9.h € P(F). Then
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1. f(L) € L(V) and f(A) € F"*".
2. f(L)og(L) = ()Of()cmdf()()Z()()
3. If h(t) = f(t)g(t), then h(L) = f(L) o g(L) and h(A) = f(A)g(A).

Theorem 6.55 (Cayley-Hamilton Theorem). Let V' be a finite-dimensional vector space. If
L e E(V), then PL(L) = Ov.

Proof. Suppose L € L(V), and fix v € V such that v # 0. Let W be the L-cyclic subspace of
V generated by v, with m = dim(W). By Proposition [6.52|(1) the set
B={v,L(v),..., L™ (v)}
is a basis for W, so that L™ (v) € Span(B) and there exist scalars aq, ..., a,_1 € F such that
L™(V) = —agv — a1L(V) — - -+ — @ L™ (V).
By Proposition [6.52(2) it follows that
P () = (=1)™(aoly + art + ast® + - -+ + ap1t™ " + ™).

Now, by Proposition [6.50, the polynomial P, divides P, which is to say there exists some
f € P(F) such that

Pr(t) = f(t) Py, (1),
and hence by Proposition [6.54f(3)

Pr(L) = f(L) o Pry, (L).

However,
Pr (L)(v) = (=1)™(aolv + a1 L+ - -+ + apa L™ + L™)) (V)
= (=1)™(aov + a1 L(V) + -+ 4 @y L™ 7H(v) + L™(V))
= (=D)"(=L"(v) +L"(v))=(=1)"0 =0,
and so

PL(L)(v) = (f(L) o Py, (L)) (v) = f(L)(Puy (L)(v)) = f(L)(0) =0,

where the last equality follows from the observation that f(L) is a linear operator by Proposition
6.54)(1). Therefore Pr(L)(v) = 0 for all nonzero v € V, and since P,(L)(0) = 0 also, we
conclude that Pr(L) = Oy. [

Corollary 6.56. If A € F"*" then Pa(A) = O,,.

Proof. Suppose A € F**". Let L € L(F") be such that [L]s = A, so L(x) = Ax for all x € F".
By Definition we have P, = Pa, where deg(Pa) = n by Proposition and so

PA(t):PL(t):a0+a1t—|—-‘~+ant"

for some ay, .. .,a, € F. By the Cayley-Hamilton Theorem P (L) = O, the zero operator on F",

which is to say
Pr(L)(x) = (apl + a1 L+ ---+a,L")(x) =0(x) =0



for all x € F™, where [ is the identity operator on F". Now, P5(A) € F"*" is given by
Pa(A) = aol, + 1A+ -+ + a, A",
so that
Pa(A)(x) = (aoLl, + 1A + -+ - + 0, A")(X) = apx + a1 AX + - -+ + a,A"x
=agl(x) + a1 L(x) + -+ a,L"(x) = (ap + a1 L+ - - - + a, L") (%)
=P (L)(x) =0(x)=0
for all x € F™, and therefore Pa(A) = O,, by Proposition M(2)

236



237

INNER PRODUCT SPACES

7.1 — INNER PRODUCTS

Recall that if z is a complex number, then z denotes the conjugate of z, Re(z) denotes the
real part of z, and Im(z) denotes the imaginary part of z. By definition,

a+bi=a—bi, Re(la+bi)=a, Im(a+bi)=>

for any a,b € R. Throughout this chapter we take I to represent any field that is a subfield of
the complex numbers C, which is to say F is a field consisting of objects on which the operation
of conjugation may be done. This of course includes C itself, as well as the field of real numbers
R, rational numbers Q, and others.

Definition 7.1. An inner product on a vector space V over F is a function () :V xV — TF
that associates each pair of vectors (u,v) € V. x V with a scalar (u,v) € F in accordance with
the following axioms:

IP1. (u,v) = (v,u) for allu,v eV

IP2. (u+v,w) = (u,w)+ (v,w) for allu,v,w eV
IP3. (au,v) = a(u,v) for allu,v €V and a € F.
IP4. (u,u) >0 for all u # 0.

A wector space V' together with an associated inner product () is called an inner product
space and denoted by (V,()).

Remark. Care must be taken to not confuse the symbol for the inner product of two vectors
(u, v) with, say, the symbol for a Euclidean vector (z,y) € R? that is used in some textbooks
(particularly calculus books). One features a pair of vectors between angle brackets, while the
other features a pair of scalars.

An inner product () associated with a vector space V' over C is generally complex-valued
and called a hermitian inner product or simply a hermitian product, in which case the
pair (V, ()) is called a hermitian inner product space.
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Axiom IP1 is the conjugate symmetry property. If V' is a vector space over R (or some
subfield of R), then this axiom becomes

(u,v) = (v,u) for allu,veV

and is called the symmetry property.
Axioms P2 and IP3 taken together are the linearity properties, and using them we easily
obtain
(u—v,w) =(u+(—v),w) = (u,w) + (—v,w) = (u,w) — (v, w).

Axiom IP4 is the positive-definiteness property. Products which satisfy all axioms save
IP4 (or which satisfy a modified version of IP4) are also of theoretical interest, but will not be
entertained in this chapter.

Theorem 7.2. Let (V,()) be an inner product space over F. For u,v,w € V and a € F, the
following properties hold:

. (0,u) = (u,0) = 0.

(u,v+w) = (u,v) + (u,w).

(u,av) = a(u,v).

(u,u) = 0 if and only if u = 0.

Af (u,v) = (u,w) for allu eV, then v=w.

O W

Proof.
Proof of Part (1): Let u € V. By Axiom IP2 we have

(0,u) = (0+0,u) = (0,u) + (0, u).

Subtracting (0,u) from the leftmost and rightmost expressions yields (0,u) = 0 as desired.
Then

(u,0) = (0,u) =0=0

completes the proof.

Proof of Part (2): For any u,v,w € V we have

(u,v+w)=(v+wu) Axiom IP1
= (v,u) + (w,u) Axiom IP2
=(v,u) +(w,u) Property of complex conjugates
= (u,v) + (u, w) Axiom IP1

Proof of Part (3): For any u,v € V and a € F we have

(u,av) = (av,u) Axiom IP1

= a(v,u) Axiom IP3

= a(v,u) Property of complex conjugates
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= a(u,v) Axiom IP1

Proof of Part (4): The contrapositive of Axiom IP4 states that if (u,u) <0, then u = 0. Thus,
in particular, (u,u) = 0 implies that u = 0.
For the converse, suppose that u = 0. Then, applying Axiom P2,

(u,u) = (0,0) = (0+0,0) = (0,0) + (0,0);

that is,
(0,0) +(0,0) = (0,0),

from which we obtain (0,0) = 0. We conclude that u = 0 implies that (u,u) = 0.
Proof of Part (5): Suppose that (u,v) = (u,w) for all u € V. Then
(v = w) = (v + (~1)w) = (0, v) + (u, (—1)w)
= (u,v) + (=1)(u,w) = (u,v) — (u, w)
=(u,v) — (u,v) =0
for all u € V', making use of Proposition 3.3, parts (2) and (3), and the property
r+(=y=z—y
for z,y € F. Letting u = v — w subsequently yields
(v—-—w,v—w) =0,
so that v — w = 0 by part (4), and therefore v =w. |

One sure result that obtains from Axiom IP4 and Theorem [7.2{4) is that (u,u) > 0 for all
u € V. This will be important when the discussion turns to norms in the next section.
Recall the Euclidean dot product as defined for vectors

3} [ 1
Xx=|": and y=|":
Tn L Yn
in R™
'Tl- n
X-y=y'x=[y - ya]| : :Zxkyk-
Ty k=1

It is easily verified that the Euclidean dot product applied to R™ satisfies the four axioms of an
inner product, and so (R™,-) is an inner product space.

It might be assumed that (C",-) is also an inner product space (where as usual C" is taken
to have underlying field C), but this is not the case. Consider for instance the vector z = [1 i|"

in C?. We have
z~z:sz:[1 i}{ﬂ:12+i2:1+(—1):0;
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that is, z - z = 0 even though z # 0, and so Axiom IP4 fails! Or consider z = [i 0 0]" in C3,
for which we find that

i
Z~z:zTZ:[i 0 0] 0|=2=-1<0
0
and again Axiom IP4 fails. To remedy the situation only requires a modest modification of the

dot product definition. For the definition we need the conjugate transpose matrix operation:
If A = [a;;] € C™*™, then set

A* = KT - [GU]T
Thus, in particular, if

21
z=|:@]|eC"
ZTZ
then
z- =% Zn]

Definition 7.3. If w,z € C", then the hermitian dot product of w and z is
w

1 n
W-z:z*W:[El En} : :Zwkik. (7.1)
k=1

Wn

The natural isomorphism [a];«1 + a is an implicit part of the definition, so that the hermitian
dot product produces a scalar value as expected.
Letting - denote the hermitian dot product, we return to the vector [1 i]" € C? and find

) (1] = =q]1] ol R
L}Lk{lzﬂJ_p zﬂJ-ll+dz%& P =1-(-1) =2,
which is an outcome that does not run afoul of Axiom IP4 and so corrects the problem [1 ]"
presented for the Euclidean dot product above.

The hermitian dot product becomes the Euclidean dot product when applied to vectors in
R": letting x,y € R" we have

x y=yx=y'x=[7 - G| |=[n o w]|]|=y'x
T T
since y;, € R implies that 7, = y;, for each 1 < k < n. For this reason we will henceforth always

assume (unless stated otherwise) that - denotes the hermitian dot product, and call it simply
the dot product.

Example 7.4. Let a,b € R such that a < b, and let V' be the vector space over R consisting of
all continuous functions f : [a,b] — R. Given f,g € V, define

b
(f.g) = / fa. (7.2)
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We verify that (V, ()) is an inner product space. Since (f, g) is real-valued for any f,g € V, we
have

b b
<f,g>:/ fgz/ of = (0.5) =1 7)

and thus Axiom IP1 is confirmed.
Next, for any f,g,h € V we have

<f+g,h>=/ab(f+g)h=/ab(fh+fg)=/abfh+/:fg=<f,h>+<f,g>,

confirming Axiom IP2.
Axiom IP3 obtains readily:

<af,g>Z/ab(af)gz/aba(fg)Za/abfg=a<f,g>-

Next, for any f € V we have f2(x) > 0 for all = € [a,b], and so

(f, ) z/abf2 >0

follows from an established property of the definite integral. Finally, if

it follows from another property of definite integrals that f(z) = 0 for all = € [a, b], which is to
say f =0 and therefore Axiom IP4 holds. |

Example 7.5. Recall the notion of the trace of a square matrix, which is a linear mapping
tr : ™" — T given by
tl“(A) = Z (077
i=1

for each A = [a;;] € F™*". Letting F = R, define ( ) : Sym, (R) x Sym,,(R) — R by
(A,B) = tr(AB).

The claim is that (Sym,,(R), ( }) is an inner product space. To substantiate the claim we must
verify that the four axioms of an inner product are satisfied.
Let A = [a;;] and B = [b;;] be elements of Sym,,(R). The si-entry of AB is } 7, a;;bj;, and

i=1 j=1
The ii-entry of BA is 37, bjja;i, from which we obtain

tI‘(BA) = Zn: Xn: bijaji

i=1 j=1

= Z Z bjia;; (Interchange i and j)

j=1 i=1

SO
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= Z Z a;;bji (Interchange summations)
i=1 j=1
= tr(AB). (Equation (7.3))

Hence
(A,B) =tr(AB) =tr(BA) = (B, A)

and Axiom IP1 is confirmed to hold.
In Chapter 4 it was found that the trace operation is a linear mapping, and so for any

A, B,C € Sym,(R) and =z € R we have
(A+B,C)=tr((A+B)C) =tr(AC + BC) = tr(AC) + tr(BC) = (A, C) + (B, C)

and

(xA,B) = tr((zA)B) = tr(z(AB)) = 2 tr(AB) = (A, B),

which confirms Axioms IP2 and IP3.
Next, observing that A = [a;;] € Sym, (R) if and only if a;; = aj; for all 1 < 1,5 < n, we

have
(A A) = tr(A?) = ZZawaﬂ ZZ%‘% = ZZCL% > 0.

i=1 j=1 i=1 j=1 i=1 j=1
It is easy to see that if tr(A?) = 0, then we must have a;; = 0 for all 1 < i,j < n, and thus
A = 0O,,. Axiom IP4 is confirmed. [ |
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7.2 — NORMS

Given an inner product space (V,()) and a vector u € V', we define the norm of u to be

the scalar
[ul = v (u,u).

If |lu]] = 1 we say that u is a unit vector. Notice that, by Axiom IP4, ||ul| is always a
nonnegative real number. The distance d(u,v) between two vectors u,v € V is given by

d(u,v) = [lu—vi,
also always a nonnegative real number. If
(u,v) =0
we say that u and v are orthogonal and write u L v.

Proposition 7.6. Let (V,()) be an inner product space. If W C V' is a subspace of V', then
Wh={veV:{v,w)=0 forall we W} (7.4)

s also a subspace of V.
Proof. Suppose u,v € W+. Then for any w € W we have
(u+v,w) = (u,w)+ (v,w)=0+0=0,
which shows that u+ v € W+. Moreover, for any a € F we have
(au,w) = a{u,w) =a(0) =0

for any w € W, which shows that au € W+. Since W+ C V is closed under scalar multiplication
and vector addition, we conclude that it is a subspace of V. |

The subspace W+ defined by (7.4)) is called the orthogonal complement of WE] IfveWwt,
then we say v is orthogonal to W and write v L V.

Proposition 7.7. Let (V,()) be an inner product space. Let w,...,w,, € V, and define the
subspace

U={veV:vLlw forall<i<m}.
If W = Span{wy,..., W}, then U = W+.

Proof. It is a routine matter to verify that U is indeed a subspace of V. Let v € U. For any
w € W we have
W =CW+ -+ CnWy

for some ¢y, ..., ¢, € F, and then since v L w; implies (w;, v) = 0 we obtain

(w,v) = <ZZ1 ciW,-,v> = ZZI ci(wi, v) = Zzl ¢(0)=0

6The symbol W is often read as “W perp.”
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by Axioms IP2 and IP3. Hence v L w for all w € W, so that v € W+ and therefore U C W+.
Next, let v.€ W+, Then (w,v) = 0 for all w € W, or equivalently

<Z:r;1 ciwi,v> =0 (7.5)

for any ¢i,...,¢, € F. If for any 1 <4 < m we choose ¢; = 1 and ¢; = 0 for j # ¢, then (7.5)
gives (w;, v) = 0. Thus v L w; for all 1 <4 < m, implying that v € U and so W+ C U.
Therefore U = W+. |

Let v € (V,()) such that ||v|| # 0. Given any u € (V,()) there can be found some ¢ € F
such that

(viu—cv) =0.
Indeed

(v,iu—cv)=0 < (v,u)—(v,ev) =0 < (v,u)—¢&(v,v) =0

& ¢v,v) =(v,u) & ¢&v,v)=(v,u)

& cov,v)=(u,v) & c= , (7.6)
where (v, v) # 0 since ||v]| # 0.

Definition 7.8. Let ||v|| # 0. The orthogonal projection of u onto v is given by

. (u,v)
proj,u = ——v
(v, v)
Theorem 7.9. Let u,v € (V,()).
1. Pythagorean Theorem: If u 1 v, then
[l + v = [al* + [[v]]*.

2. Parallelogram Law:
a4+ vI[* + [u = v = 2f[ul]* + 2[]v]*.
3. Schwarz Inequality:
[(w, V)| < [lulfIv]l.
4. Triangle Inequality:
lu+ vl < [[uf + [v].
5. Cauchy Inequality:

1 1
[ull[v] < §||u||2 + §||V||2-
Proof.

Pythagorean Theorem: Suppose u L v, so that (u,v) = (v,u) = 0. By direct calculation we
have

[lu+v|P=u+v,ut+v)={wu+v)+{v,ut+v) Axiom IP2
= (u,u) + (u,v) + (v,u) + (v, v) Theorem [7.2/2)
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= (w,u) + (v,v) = [lul]* + [|v]?
Parallelogram Law: We have
a4 vI[* = (u,u) + (w,v) + (v,u) + (v, v) = [[ul* + (u,v) + (v,u) + []v]* (7.7)
from the proof of the Pythagorean Theorem, and
lu=vi* = (u—v,u=v) = [ul|* - (u,v) = (v,u) + [[v]" (7.8)

Adding equations ([7.7)) and (7.8) completes the proof.

Schwarz Inequality: If u =0 or v = 0, then by Theorem [7.2(1) we obtain
[{w, v)[| = [0] = 0 = [ul{fIv]

which affirms the theorem’s conclusion.
Suppose u,v # 0, and let
(w,v) (u,v)

c= = i
(v.v)  |v[]?

Now, by ,
(u—cv,ev) =clu—cv,v) = c(v,u—cv) = ¢(0) = ¢(0) = 0.
Thus u — ¢v and cv are orthogonal, and by the Pythagorean Theorem
[ull* = (u = ev) +ev]* = [lu—cv|® + [[ev]?.

Hence |lcv||* < ||ul|? since |Ju — c¢v||> > 0. However, recalling that 2z = |2|? for any 2 € F, we

obtain
[(u, v)|? ’

. )]
T

lvi*

[ev]]? = (v, ev) = ce(v, v) = [c]||v]]® = v

and so [lev||* < |lu/|? implies that

Therefore we have
[(u, v)[> < JlulP?[Iv]]?,

and taking the square root of both sides completes the proof.

Triangle Inequality: For any u,v € V we have (u,v) = a + bi for some a,b € R, so that the real
part of (u,v) is Re({(u,v)) = a. (If V is a vector field over R then b = 0, but this will not affect
our analysis.) By the Schwarz Inequality we have

Va2 + 0 = la+bi| = [{u,v)| < [lul[|[v],
and since
Re((u,v))=a < |a| = Va? < vVa? + 12,
it follows that
Re((u,v)) < [[ufl[[v]. (7.9)
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Recalling the property of complex numbers z + zZ = 2 Re(z), we have

(u,v) + (v,u) = (u,v) + (u,v) = 2Re ((u,v)). (7.10)
Now,
[u+v|?=|[ul? + (u,v) + (v,u) + ||v]? Equation ([7.7))
= [[ul]* + 2Re ((u, v)) + [|v|” Equation ([7.10)
< [all® + 2[Rl f[v ]l + [Iv]], Inequality
and so

2
[+ v < ([lull + [IvI)".
Taking the square root of both sides completes the proof.

Cauchy Inequality: This inequality in fact holds for all real numbers: if a,b € R, then

1, 1
0<(a=b)’ =0’ =20+ = 20b<a’+ = ab<oa’+ b,

and we’re done. ]
Proposition 7.10. Let (V,()) be an inner product space, and let vy,...,v, € V be such that
v; # 0 for each 1 <i <mn and v, L v; wheneveri# j. If veV and

o (v,v;)
b (Vi)

for each 1 < i <n, then

n

vV — E C;V;
i=1
15 orthogonal to vyi,...,Vv,.

Proof. Fix 1 < k < n. Since v; # 0 we have (vi, vi) # 0. Also (v;,v;) = 0 whenever i # j.

Now,
<V - ZCiVi,Vk> = <V7Vk> - <Z Civi7vk> = <V7Vk;> - ZQ’(Vi,Vk)
i=1 i=1 i=1
= (v, Vi) — C{Vi, Vi) = (V, Vi) — v, vi) (Vi Vi)
(Vk,Vk:>
- <V7Vk?> - <V7Vk’> =0,
and therefore v — ZZ:1 vy L vy forany 1 < k <n. [ |

Proposition 7.11. Let (V,()) be an inner product space, and let vy,...,v, € V be such that
v; # 0 for each 1 < i <mn and v; L v; wheneveri # j. If veV and ¢; = (v,v;)/{vi,v;) for

each 1 <i <n, then
n n
HV — Zi:l cvill < Hv — Zi:l a;Vv;

for any aq,...,a, € F.
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Proof. Fix ve V and ay,...,a, € F, and let ¢; = (v, v;)/(v;, v;) for each 1 <1i < n. First we
observe that for any scalars x1,...,z, we have

<V B Z::1 KA ijl x’ivi> = Zj:1 <V - Z:Zl Ck Vi, xin’> Theorem [7.2{2)
= Zé_l z; <V - Z:_l CKVi, vi> Theorem [7.2(3)
= Zé_l 7;(0) =0, Proposition

which is to say that v — Y ;_, ¢xvy is orthogonal to any linear combination of the vectors

Vi,...,Vy,. In particular
n n
vV — E C;V; 1 E (Cl‘ — CLZ')Vi,
1 i=1

1=

and so by the Pythagorean Theorem

n 2 n n
HV— E vl = ||V — E GVt E (e —ai)v;
i=1 i=1 i=1
n 2 n
= ||V — E ) CiV; —+ H E ) (Ci — ai)vi
=1 =1
n 2
>V — E CiV;
=1

Taking square roots completes the proof. |

2

2

PROBLEMS

1. Let (V,()) be an inner product space, and let S C V with S # @. Show that
St={veV:(v,s)=0foralscS}

is a subspace of V' even if S is not a subspace.
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7.3 — ORTHOGONAL BASES

If B={vy,...,v,} is a basis for a vector space V and (-,-) : V x V — F is an inner product,
then we refer to B as a basis for the inner product space (V, ( )).

Definition 7.12. Let B = {vy,...,Vv,} be a basis for an inner product space (V,()). If v; L v,
whenever i # j, then B is an orthogonal basis. If B is an orthogonal basis such that ||v;|| = 1
for all v, then B is called an orthonormal basis.

Lemma 7.13. Let vy,...,v, € (V,()) be nonzero vectors. If v; L v; whenever i # j, then
Vi,...,V, are linearly independent.

Proof. Suppose that v; L v; whenever ¢ # j. Let z1,..., 2, € F and set

vy + - +a,v, =0. (7.11)
Now, for each 1 < i < n,

<Z :vkvk,vi> = (0,v;) = 0.
k=1

On the other hand,

n n
<Z OCka,Vz*> = Zu(wwﬁ = $i<Vi,Vz'>.
k=1 k=1

Hence
%‘(Vz‘, Vi) =0,

and since v; # 0 implies (v;,v;) # 0, it follows that z; = 0. Therefore (7.11)) leads to the
conclusion that xry =--- =z, =0, and so vq,...,Vv, are linearly independent. [ |

Theorem 7.14 (Gram-Schmidt Orthogonalization Process). Let m € N. For any n € N,
if (V,()) is an inner product space over F with dim(V) = m 4+ n, W is a subspace of V' with
orthogonal basis (w;)™,, and

(Wl,...,Wm,um+1,...7um+n) (712)
is a basis for V, then an orthogonal basis for V is (w;)™, where
i1 (s, W)
iy Wk
wW; = u; — — Wy 7.13
=2 T (713)

for each m+1 <i<m-+n. Moreover,

Span(w;)"™ % = Span(wi, ..., W, Upi1, -« - s W) (7.14)

foralll1 <k <n.

Note that the existence of vectors w11, ..., Wnt, € V such that is a basis for V is
assured by Theorem [3.55] Also observe that, since m,n € N implies m + n > 2, the theorem
does not address one-dimensional vector spaces. This is because one-dimensional vector spaces
are not of much interest: any nonzero vector serves as an orthogonal basis!
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Proof. We carry out an argument by induction on n by first considering the case when
n = 1. That is, we let m € N be arbitrary, and suppose (V, ()) is an inner product space with
dim(V') = m+1, W is a subspace of V' with orthogonal basis (w;)™, and B = (W1, ..., Wy, Upi1)
is a basis for V. Let

m

u
Wt = s = 3 (o1, W)
2wy, wi)
If w,,.1 = 0, then
m
u _ Z <um+1,Wk>Wk
L= Aomtl TR/
" =1 <Wk7 Wk>

obtains, so that u,,+1 € Span(w;)", and by Proposition it follows that B is a linearly
dependent set—a contradiction. Hence w,,,; # 0 is assured. Moreover w,, .1 is orthogonal
to W1, ..., Wy, by Proposition [7.10} implying that w; L w; for all 1 < i, j < m + 1 such that
i # j. Since {wy,...,W,,41} is an orthogonal set of nonzero vectors, by Lemma it is also a
linearly independent set. Therefore, by Theorem m (w;)™ 1 is a basis for V that is also an
orthogonal basis. We have proven that the theorem is true in the base case when n = 1.

Next, suppose the theorem is true for some particular n € N. Fix m € N, suppose (V, ()) is
an inner product space with dim(V') =m + n + 1, W is a subspace of V' with orthogonal basis
(wi)iZ,, and

B= (Wi, o, Wy, Wi 1y -+ s Wpnt1)

is a basis for V. Let V’ = Span(B \ {Wn4ns1}), which is to say (V’,()) is an inner product
space with basis

/
B = (Wi, .., Wi, W1y - -+, W)

and W is a subspace of V'. Since dim(V’) = m + n, by our inductive hypothesis we conclude
that (w;)1", where
i1

<ui7 Wk)
wW; = u; — - W},
kz:; <Wk‘7 Wk>
for each m + 1 < i < m + n, is an orthogonal basis for V.

Now, V' is a subspace of V with orthogonal basis (w;)\", and

C= (le <o s Wi, um+n+1)
is a basis for V. (To substantiate the latter claim use Proposition twice: first to find that
W ini1 & Span(B') = V' = Span(w;)™ 4",

and then to find that C is a linearly independent set. Now invoke Theorem ) Applying

the base case proven above, only with m replaced by m + n, we conclude that (w;)""*! is an
orthogonal basis for V', where

m+n

Wintn+l = Umin+1 — Z

k=1

(Wngnt1, Wi)

Wi..
(Wi wi)

We have now shown that if the theorem holds when m € N is arbitrary and dim(V') = m+n,
then it holds when m € N is arbitrary and dim(V') = m +n 4+ 1. All but the last statement of
the theorem is now proven by the Principle of Induction.
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Finally, to see that ((7.14)) holds for each 1 < k < n, simply note from (7.13|) that each vector

in (w;)"4* lies in

Span(wl, ceey Wiy U1, - - 7um+k)7
and also each vector in
(W1, ey Wiy W1y« -+, Wyntk)
faad m+k
lies in Span(w;);2". |

Corollary 7.15. If (V,()) is an inner product space over F of dimension n € N, then it has an
orthonormal basts.

Example 7.16. Give the vector space R? the customary dot product, thereby producing the
inner product space (R?,-). Let

1 —1 1
u; = 1 s Uy = 1 s us = 2
1 0 1

Then B = {u;,uy, u3} is a basis for (R3,-). Use the Gram-Schmidt Process to transform B into
an orthogonal basis for (R3,-), and then find an orthonormal basis for (R3,-).

Solution. Let w; = u;. Then {w;} is an orthogonal basis for the subspace W = Span{w }.
Certainly W # R3, and we already know that {w,us, uz} is a basis for R3. Hence we have the
essential ingredients to commence the Gram-Schmidt Process and find vectors wy and wj so
that {wy, wy, w3} constitutes an orthogonal basis for (R?,-). The formula for finding w; (where
i=2,3)1is

u; - Wi
wW; = u; — Wp.
1 Wk Wk
Hence
-1 1 -1
Wo = U _u2 Wi - 1 [ 17170]T [17171]T 1| = 1
T wewy ol LLUT-[LLIT | ol’
and
w3—u3—zu3'wkwk:u3—u3 Wi U3 -Wy )
1 Wi - Wi Wi Wi Wo - Wy
1 1 —1 1/6
4 1
=12|—-—=]1 3 1= 1/6
1| 31 ol |-1/3

(Note: it should not be surprising that ws = uy since us is in fact already orthogonal to wj.)
We have obtained

1] [-1 1/6
{W17W27W3} = 1 ) 1 3 1/6
1| | o] |13

as an orthogonal basis for (R?, ).
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To find an orthonormal basis all we need do is normalize the vectors wi, wy and ws. We

have
o _ W [111]TW Wy lllor
Cdwll LVEVBTVEL T T el 2'v2 ]
and
X w3 { 1 1 2 T
W3 =77 |7 F&= =
lwsl (V6 V6 V6
The set {W, Wa, W3} is an orthonormal basis for (R?, ). |

Example 7.17. Recall the vector space Py(R) of polynomial functions of degree at most 2 with
coefficients in R, which here we shall denote simply by P,. Define

(p,Q>=/11pq

for all p, g € Py. The verification that (Ps, ( )) is an inner product space proceeds in much the
same way as Example Apply the Gram-Schmidt Process to transform the standard basis
& = {1,z,2*} into an orthonormal basis for (Pq, ()).

Solution. Let wy = 1, the polynomial function with constant value 1. If W = Span{w }, then
W is a subspace of Py such that W # Py, and {w;} is an orthogonal basis for W. Starting
with wi, we employ the Gram-Schmidt Process to obtain wy and w3 from uy = 2 and uz = 22,

respectively. We have

_ (ug, wy) (z,1) Y ade 0
Wo=U2— 57— W1 =2 — =r— 3 —r— - =uz,
<W17 W1> <1, 1) fil 1dr 9
and
W3 = ug — <u3,W1>W —ngsz_ (22, 1) B <x2’x>x
(Wi, wi) (W2, Wa) 1,1 (z,)
1
_ o Jade S ot da _ 21
fl ldx f L r2dw 37
and so

{W17W27W3} = {1,1’,1‘2

1
— 3
is an orthogonal basis for Ps.
To find an orthonormal basis we need only normalize the vectors wy, wy and ws. From

[wil| =/ (w1, wi) = /(1,1) = f,ll ldz = V2,
Iwall = v/wa,wa) = V/{wa) = /[ a2 dw = f
Iwsll = V/ws, wa) = /(@2 = La2 = 1) = /1, (@2 = 1) do = /3,
we obtain
A_W1_1 A_szﬁmA W3 \/1_0
2 Y

Wi = =—, Wy = Wy = —— = —— (322 = 1).
el T T Twal T A

and
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The set {W1, W, W3}, which consists of the first three of what are known as normalized Legendre
polynomials, is an orthonormal basis for (P, (). |

Proposition 7.18. Let (V,()) be an inner product space over F of dimension n € N, let
B={wi,...,w,uy,...,us}
be an orthogonal basis for 'V, and let
W = Span{wy,...,w,} and U = Span{uy,...,us}.
Then U =W+, W =U*, and
dim(W) + dim(W+) = dim(V).

Proof. Let u € U. Then there exist scalars z1, ...,z € F such that

u = Z r;4u;.
i=1
Let w € W be arbitrary, so that
W = Z YW
j=1
for scalars y1,...,y, € F. Now,
(u,w) = <Zi:1 T, W > = Z z; (u;, w) (Axiom IP2)
- Zz 1( < bk Jj= ij]>>
— Z X (wl (u;, y;w, ) (Theorem [7.2(2))
1= ]:
= Z » <:EZ Y (g, Wy ) (Theorem [7.2(3))

Jj=

Since B is an orthogonal basis we have (u;, w;) =0 for all 1 <i <sand 1 <j <r, so that

= ZZﬁlg] (ui,wj> =0

i=1 j=1

and therefore u L w. Since w € W is arbitrary, we conclude that u € W+ and hence U C W+,
Next, let v € W+, Since B is a basis for V, there exist scalars =1, ..., s, v1,...,y, € F such

that
S T
vV = inui + Zijj.
i=1 j=1

Fix 1 <k <r. Since ypw;, € W we have

(v,ypwyg) = 0. (7.15)
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On the other hand, since (u;, wg) =0 for all 1 <i <, and (w;, wy) = 0 for all j # k, we have

(VoW = > zfi(n W) + > yilk(Wi, Wi) = Ukl (We, Wi) = [yl (Wi, wi). (7.16)
i=1 Jj=1

Combining ([7.15)) and ((7.16)) yields
|kl (W, wi) = 0,

and since wy # 0 implies that (wy, wy) # 0 by Axiom IP4, it follows that yx = 0. We conclude,

then, that
vV = Z riu; € U,
i=1

and so W+ C U. Therefore U = W+, and by symmetry W = U+,
Finally, since {uy, ..., us} is a basis for U and {wy,...,w,} is a basis for W, we obtain

dim(V) =n =r + s = dim(W) + dim(U) = dim(W) + dim(W),
which completes the proof. |

The conclusions of Proposition [7.1§] in fact apply to any arbitrary subspace of an inner
product space, as the next theorem establishes.

Theorem 7.19. Let W be a subspace of an inner product space (V,()) over F with dim(V') € N.
Then

whHt=w
and

dim(W) + dim(W+) = dim(V).

Proof. The proof is trivial in the case when dim (V') = 0, since the only possible subspace is
then {0}. So suppose henceforth that n = dim(V") > 0.
If W = {0}, then W+ = V. Now,

(WH=Vvi={o} =W,
and since dim({0}) = 0 we have
dim(V) = dim({0}) + dim(V) = dim(W) + dim(W+)

If W =V, then W+ = {0} and a symmetrical argument to the one above leads to the same
conclusions.

Set m = dim(W), and suppose W # {0} and W # V. Then m < n by Theorem [3.56]2),
and m # n by Theorem [3.56|3), so that 0 < m < n. Since W is a nontrivial vector space
in its own right, by Corollary it has an orthogonal basis {wy,...,w,,}. Since W # V it
follows by Theorem that there exist wy,41,...,w, € V such that B ={wy,...,w,} is an
orthogonal basis for V. Observing that W = Span{wy, ..., w,,} and defining

U = Span{w,,411,...,Wp},
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by Proposition we have U = W+, W = U*t, and
dim(W) 4 dim(W+) = dim(V).
Finally, observe that
(WJ_)J_ —_ UJ_ — VI/;
which finishes the proof. |

The dimension equation in Theorem amounts to a generalization of Proposition [4.46]
from the setting of real Euclidean vector spaces (equipped specifically with the Euclidean dot
product) to that of abstract inner product spaces over an arbitrary field F.

Example 7.20. As a compelling application of some of the developments thus far, we give a
proof that the row rank of a matrix equals its column rank that is quite different (and shorter)
than the proof given in §3.6. Let A = [a;;] € R™*™.

Define the linear mapping L : R® — R™ by L(x) = Ax, and let a,...,a, € R" be such

that a/,...,a' are the row vectors of A. Then Nul(L) is a subspace of the inner product space
(R™,-) by Proposition 4.14] and so too is Row(A) = Span{a, ..., a,}. Now,
aj x X - a; 0
x€eNul(l) & Ax=0 < o= : =|:| & xLla....,.x1a,,
alx X - an, 0
so that

Nul(L) ={xeR":x L a;forall 1 <i<m}
and by Proposition [7.7| we have Nul(L) = Row(A)*. By Theorem
dim(Row(A)) + dim(Row(A)*) = dim(R"),
whence
row-rank(A) + dim(Nul(L)) = n
and finally
row-rank(A) = n — dim(Nul(L)).
Next, by Theorem [4.37]
dim(Nul(L)) + dim(Img(L)) = dim(R"),
and since Img(L) = Col(A) by Proposition [4.35 it follows that

n = dim(R") = dim(Nul(L)) + dim(Col(A)) = dim(Nul(L)) + col-rank(A)

and finally
col-rank(A) = n — dim(Nul(L)).
Therefore
row-rank(A) = col-rank(A) = n — dim(Nul(L)),
and we're done. |

Proposition 7.21. If W is a subspace of an inner product space (V,()) over F, then
V=WaoWwt
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Proof. The situation is trivial in the cases when W = {0} or W = V| so suppose W is a
subspace such that W # {0}, V. Let dim(WW) = m and dim(V') = n, and note that 0 < m < n.
Since (W, ()) is a nontrivial inner product space, by Corollary is has an orthogonal basis
{w1,...,w,}. By Theorem there exist W,,11,...,w, € V such that B = {wy,...,w,} is
an orthogonal basis for V', and W+ = Span{w,,,,1,...,w,} by Proposition .

Let v € V. Since Span(B) = V, there exist scalars ¢y, ..., ¢, € F such that

n m n
vV = E CLW} = E CLWi + E CkWp,
k=1 k=1

k=m+1

and so v e W + W+, Hence VC W + W+, and since the reverse containment is obvious we
have V =W + W+,

Suppose that v € W N WL, From v € W+ we have v L w for all w € W, and since v e W
it follows that v L v. Thus (v,v) = 0, and so v = 0 by Theorem [7.2(4). Hence W N W+ C {0},
and since the reverse containment is obvious we have W N W+ = {0}.

Since V. =W + W and W N W+ = {0}, we conclude that V =W & W+, |

Corollary 7.22. If W is a subspace of an inner product space (V,()) over F, then
dim(W @ W) = dim(W) + dim(W).
Proof. By Proposition we have V =W & W+, and thus dim(V) = dim(W & W+). The

conclusion then follows from Theorem [7.19 [ |

The corollary could also be proved quite easily by utilizing Proposition 4.36, which applies
to abstract vector spaces over IF.

For the following theorem we take all vectors in F" to be, as ever, n x 1 column matrices
(i.e. column vectors).

Theorem 7.23. Let (V,()) be a finite-dimensional inner product space over F. If O is an
ordered orthonormal basis for V', then

(u,v) = [vlp[u]o (7.17)
forallu,veV.

Proof. The statement of the theorem is clearly true if V' = {0}, so assume dim(V) =n € N
and set O = (wy,...,w,). Let u,v € V, so there exist uy,...,u,,vy,...,v, € F such that

u=uw;+---+u,w, and V=v;wW;+---+0,W,,

and hence
Uy U1
[ulp =1 : and [v]p =
Un Un
Now, because O is orthonormal, (w;, w;) = 0 whenever i # j, and (w;, w;) = |[|[w;]|? = 1 for all

i =1,...,n. By Definition and Theorem we obtain

<11, V> = <Z uiWZ’,ZUjo> = ZZui@j(Wi,wj>

j=1 i=1 j=1



256

n n
= Zui@i<wuwz’> = Zui@i = [v]o[ulo,
i=1 i=1
as desired. [ |

In the case when F = R we find that [v]}, = [v]}, since the components of [v]o are all real
numbers, and thus we readily obtain the following.

Corollary 7.24. If (V,()) is an inner product space over R, and O = (wy,...,W,) is an
ordered orthonormal basis for V', then

for allu,veV.
In Theorem [7.23] let po : V' — F™ denote the O-coordinate map, so that
vo(v) = [v]o
for all v € V, and then (7.17) may be written as
(u,v) = po(u) - po(v),
recalling Definition [7.3] Now, if || - ||y denotes the norm in V and || - ||p= the norm in F”, then
IVllv = V{v.v) = Veo(v) - po(v) = leo(v)|e (7.18)

for all v € V. In fact, if dy and dg-» are the distance functions on V' and F", respectively, so
that for any u,v € V and x,y € F" we have

dv(u,v) =[u—vlly and dm(x,y)=[x—yle,
then it follows from ([7.18)) that

dy(u,v) = lu=vljy = [[po(u = V)l = llpo(w) = vo(v)[em = dm(po(u), po(v)), (7.19)

recalling that pp is an isomorphism.
Equation ([7.18]) exhibits a property of the mapping ¢o that is called norm-preserving,
and equation ([7.19) exhibits the distance-preserving property of @e.

Definition 7.25. Let (U, ( )y) and (V,{ )v) be inner product spaces, and let || - ||y and || - ||v
denote the norms on U and V' induced by the inner products ( )y and ( )y, respectively. A linear
mapping L : U — V is an isometry if it is norm-preserving; that is,

[ullo = [[L(u)]lv

forallu e U. If L is also an isomorphism, then (U, { )y) and (V,{ )y) are said to be isomet-
rically isomorphic.

Thus we see that the mapping ¢e is an isometry as well as an isomorphism, where it must
not be forgotten that O represents an orthonormal basis for an inner product space (V, ()) over
F of dimension n > 1. By Corollary every such inner product space admits an orthonormal
basis, and so must be isometrically isomorphic to (F”,-).
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PROBLEMS

. Let R? have the Euclidean inner product. Use the Gram-Schmidt Process to transform the
basis {uy, uy} into an orthonormal basis.

(a) u; = []_, —3}T, Uy = [Q,Q]T
() wy =10, us = [3, 5] .

. Let R3 have the Euclidean inner product. Use the Gram-Schmidt Process to transform the
basis {uy, uz, uz} into an orthonormal basis.

(a) wy =[1,1,1)7, up = [~-1,1,0]7, us = [1,2,1]".
(b) u; = [1,0,0]T, Uy = [3,7, —Q}T, Uz = [074, 1]T

. Let R* have the Euclidean inner product. Use the Gram-Schmidt Process to transform the
basis {uy, uy, u3, us} into an orthonormal basis:

0 1 1 1
|2 ! 2 10
u = 11|’ U = K usz = 0l uy = ol
0 0 -1 1
. Let W be the subspace of R* spanned by the vectors

1 3 2
10 |0 |1
Vi = 11 Vo = 21 V3 = -1
0 0 3

(a) Beginning with the vector vy, use the Gram-Schmidt Orthogonalization Process to obtain
an orthogonal basis for W.

(b) Find an orthonormal basis for .

. Consider the matrix

1 2 5

-1 1 -4
A=|-1 4 -3
1 -4 7

1 2 1

Let uy, us, ug denote the column vectors of A.

(a) Show that {uj,us,us} is a basis for Col(A).
(b) Find an orthogonal basis for Col(A).
(c¢) Find an orthonormal basis for Col(A).
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(d) Letting ry,...,r5 € R? denote the row vectors of A, find a basis for Row(A) of the form
R ={r{,r/ r]}, where 1 <i < j <5 are such that i and j are as small as possible.ﬂ

(e) Use the basis R found in part (d) to obtain an orthogonal basis for Row(A).
(f) Find an orthonormal basis for Row(A).

"This ensures that there is only one possible answer.
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7.4 — QUADRATIC FORMS

Recall from §7.1 that the vector space C" together with the operation given by

W Z=272W

for w,z € C" is an inner product space over C (and the product itself is called the hermitian
inner product). For the conjugate transpose operation z* = zZ' we find that if z has only
real-valued entries (so that z € R") then z* = z'. The norm of z is

|z = vz -z = Vz'z. (7.20)

For the statement and proof of the next theorem recall that the standard form for elements
of C" is x4 iy, where x,y € R”. In particular if z = x 41y € C for z,y € R, then Z = z implies
z is real:

Z=2 = x—w=x+1y = 2iy=0 = y=0 = z=u

Theorem 7.26. All eigenvalues of a real symmetric matriz A are real, and if x +iy € C" is a
complex eigenvector corresponding to X\, then either X or'y is a real eigenvector corresponding to

A

Proof. Suppose A € Sym, (R), so A = A since A is real and AT = A since A is symmetric,
and thus A* = A. Let X\ be an eigenvalue of A with corresponding eigenvector z € C", so z # 0
is such that Az = A\z. Now,

7" Az = z°)\z = \(z"z) = Az,

and since ||z]| > 0 by Axiom IP4, we may write

A= Z*AQZ.
|z]|

As a 1 x 1 matrix \ is symmetric, so that

XZ(X)T:)\*:(ZHZ?;) :zA(z) _zAz:)\’

Izl [l

and hence A is real.
Next, z € C" implies z = x + 1y for x,y € R", and then from Az = Az we obtain

Ax + 1Ay = Ax +1i)y.
Since the entries of A are real and A is real, it follows that
Ax=)Xx and Ay=)\y.

Now, because z # 0, either x # 0 or y # 0. Therefore either x or y is a real eigenvector of A
corresponding to . [ ]
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Let a;; € R for all 1 <4,7 <n. A function f:R" — R given by

f(x) = Z Z ;i TiT 5 (7.21)

i=1 j=1
for each x = [z1,...,2,]" is called a quadratic form on R". An example of a quadratic form
on R? is
f(z,y) = 22% + 10zy — 29°.
Letting

x 2 5
x—{y} and A—L.) _2},

it is easy to check that f(x) = x' Ax if we identify the 1 x 1 matrix x" Ax with its scalar entry.
The fact that A is a symmetric real matrix here is not an accident: any quadratic form on R"
may be written in the form x" Ax for some A € Sym,,(R).

Definition 7.27. If A € Sym,(R), then the quadratic form associated with A is the
function Qa : R™ — R given by

Qa(x) =x"Ax
for all x € R™.

Again we note that, formally, x" Ax is a 1 x 1 matrix, but the natural isomorphism [c] +— ¢
is implicitly in play in Definition so that Qa(x) is a real number.

Example 7.28. Any quadratic form in R? may be written as
f(z,y) = ax® + 2bxy + cy?

for a,b,c € R. We wish to find a real symmetric 2 x 2 matrix A such that Q4 = f on R2. We
have

f(z,y) = (az® + bry) + (bry + cy?) = (azx + by)x + (bx + cy)y

i s te ofs ]

)
which shows that f is the quadratic form associated with

a b
A:[b ]
|
Example 7.29. Let
[ 3 -1 2 x
A=|-1 1 4 and x= |y
2 4 =2 z
Then
[ 3 -1 2][=x 3z —y+ 22
QA(X):[ZL‘ Y z] -1 1 4|y :[m Y z] —x+y+ 4z
2 4 =21|=z 2v + 4y — 2z
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=2(3x —y+22)+y(—z+y+42) + z2(2x + 4y — 2z)
= 32% — 2zy + 4wz + y? + Syz — 227

is the quadratic form associated with A.
More generally, if

a b c
A=1|b d e
c e f
then
Qa(x) = az® + 2bxy + 2crz + dy* + 2eyz + f2° (7.22)
is the associated quadratic form. |

For n € N define S” to be the set of all unit vectors in the vector space R"*! with respect to
the Euclidean dot product:

I n+1
S"={xeR"": x| =1} = : GR”“:sz:l
Tn1 k=1

The set S” may be referred to as the n-sphere or the (n-dimensional) unit spheref] If n = 1
we obtain a circle centered at (0, 0),

o= {[7]ematerian)

and if n = 2 we obtain a sphere with center (0,0, 0),

s
SP={|y|leR*: 2?2 +y>+22=1
z

The next proposition establishes an important property of the quadratic forms of symmetric
matrices that have, in particular, real-valued entries. It depends on a fact from analysis, not
proven here, that if f:.S C R" — R is a continuous function and S is a closed and bounded set,
then f attains a maximum value on S. That is, there exists some x, € S such that

f(x0) = max{f(x) : x € S}.

Certainly S"7!, as a subset of R", is closed and bounded with respect to the Euclidean dot
product. Also a cursory examination of should make it clear that, for any A € R™*",
the function @) is a polynomial function. Hence ) is continuous on R™ with respect to the
Euclidean dot product, which easily implies that Qa is continuous on S*~! C R"™.

81t makes no difference whether we regard the elements of S™ as vectors or points. For consistency’s sake we
keep on with the “vector interpretation” here, but later will make occasional use of the “point interpretation” to
aid intuitive understanding.
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Definition 7.30. Let U C R be an open set, and let £ : U — R™ be given by
fi(?)
fO) = : |
fa(t)

where fi, : U — R for each 1 < k < n. If the derivatives f|(to), ..., f(to) are defined at ty € U,
then the derivative of the vector-valued function f at tq is

fi(to)
f'(to) =|
fr(to)

Since all the eigenvalues of a symmetric real matrix A are real by Theorem [7.26] it makes
sense to speak of the “smallest” and “largest” eigenvalue of A, as in the next theorem.

Theorem 7.31. Suppose A € Sym,,(R), and let Anin and Apax be the smallest and largest
eigenvalues of A, respectively.

1 If
Qa(vi) =max{Qa(x) :x€S" '} and Qa(vy) = min{Qa(x):x € S" '},

then vy and vy are eigenvectors of A.
2. For all x € S" 1,
>\min S XTAX S )\max'
3. For x € R™ such that ||x]| = 1, x"AX = Apax (7€8p. Amin) iff X is an eigenvector of A
corresponding to Amax (T€SP. Amin)-

Proof.
Proof of (1). Define U C R™ to be the set

U={uelR":u-v, =0}

Since ||vy|| = 1 implies that v; # 0, by Example we find that U is a subspace of R” and
dim(U) = n — 1. By Proposition [4.46]

dim(U~+) = dim(R") — dim(U) =n — (n — 1) = 1,

and since clearly v; € U+ and {v,} is a linearly independent set, it follows by Theorem M(l)
that {v;} is a basis for U+. Hence

U+ = Span(v;) = {cv; : c € R}.
Fix u € U such that ||u]| = 1, and define the vector-valued function f : R — R” by
f(t) = sin(t)u + cos(t)vy.
Since vy - vy = |[vi]|* =1, u-u=|Jul]* =1, and u - v; = 0, we find that
I£(8)|* = £(¢) - £(t) = (sin(t)u+ cos(t)v1) - (sin(t)u + cos(t)vy)

= sin?(t)u - u + 2 cos(t) sin(t)u - v; + cos®(t)vy - vy
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= sin?(t) + cos®(t) = 1,
and so f(t) € S*™! for all ¢ € R. That is, the function f can be regarded as defining a curve on
the unit sphere S"~!, and f(0) = v; shows that the curve passes through the point v;. Letting
Uy v
u=| : and vy =
Up Un

we have
uy sin(t) + vy cos(t)

£(t) = : :
Uy, sin(t) + vy, cos(t)
and so by definition
uy cos(t) — vy sin(t)
f'(t) = : = cos(t)u — sin(t)v;.
Uy, cos(t) — v, sin(t)
Now, letting g = Qa o f and defining the function Af by (Af)(¢) = Af(t) for t € R, we have
g(t) = Qa(f(t)) = £(t) Af(t) = £(t) - Af(t) = £(t) - (AF)(t).
By the Product Rule of dot product differentiation,
g'(t) = (1) - (AD)(t) + £(2) - (AF)'(1) = £'(2) - Af(t) + £(2) - AL'(2)
= f'(t)T Af(t) + f(t) T Af'(1). (7.23)
Since f(t) T Af'(t) is a scalar it equals its own transpose, and so by Proposition and the fact
that AT = A we obtain
(1) TAF(1) = (F()TAF(1)) " = £/(0)TATE(E) = £/(t) TAL(2).
Combining this result with (7.23)) yields
g'(t) =2f'(t)TAL(t). (7.24)

Because the function f maps from R to S"7!, the function Q4 : S" ' — R has a maximum at
v, € "1 and

9(0) = Qa(£(0)) = Qa(v1),
it follows that the function g : R — R has a local maximum at ¢ = 0. Thus, since ¢’(0) exists, it
further follows by Fermat’s Theorem in §4.1 of the Cualculus Notes that ¢’'(0) = 0. From ([7.24])
we have

u-Av, =u'Av, = f'(0)TAf(0) = 0,
and since u € U is arbitrary we conclude that Av; L u for all u € U. Therefore
Av, e Ut ={xecR":x Luforalluc U} = Span(vy),

and so there must exist some A € R such that Av; = Avy. Since v; € R” is nonzero, we
conclude that v, is an eigenvector of A. The proof that vy € S"7! is also an eigenvector of A is


http://faculty.bucks.edu/erickson/math140/140chap4.pdf
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much the same.
Proof of (2). By the previous result, letting A; (resp. A2) be the eigenvalue of A corresponding
to vy (resp. vy), we have

X Ax = Qa(x) < Qa(vy) = VlTAvl = VIT(/\lvl) = /\1(V1TV1) = A1 < Apax

and
XTAX = QA<X) Z QA(VQ) = VZTAV2 = VQT()\QVQ) = )\Q(VQTVQ) = )\2 Z /\min

for any x € S,
Proof of (3). We provide only the proof of the statement concerning Ay, since the proof of the

other statement is similar. Let x € R™ be such that ||x|| = 1.
Suppose X Ax = A\pax. Then

Qa(x) = max{Qa(u) : u e S" '}

by part (2), and it follows by part (1) that x is an eigenvector of A. Let A be the eigenvalue of
A corresponding to x. We now have

Amax = X Ax =x' (Mx) = Ax'x = ),

and so X is an eigenvector of A corresponding to Ayax.
For the converse, suppose x is an eigenvector of A corresponding to Ap.c. Then

X' AX = X (AmaxX) = AmaxX ' X = Amax,
and the proof is done. |
Example 7.32. Find the maximum and minimum value of the function ¢ : R3 — R given by
o(z,y,2) =2 — doy + 4y — dyz + 2° (7.25)

on the unit sphere S?.

Solution. Comparing (7.28)) to equation (7.22)) in Example [7.29] we see we have a =1, b = —2,
c=0,d=4,e= -2 and f = 1. Thus the function ¢ is the quadratic form associated with the

matrix

a b c 1 -2 0
A=|b d e|l=|-2 4 -2
c e f 0 -2 1

The characteristic polynomial of A is

Pa(t) = det(A —tI;) =| -2 4—t -2

= () -0

4—-t =2
-2 1-t

= —t* 461> —t — 4,
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and so
Pa(t)=0 & t3—6t>+t+4=0.

By the Rational Zeros Theorem of algebra, the only rational numbers that may be zeros of
Pp are £1, £2, and £4. It happens that 1 is in fact a zero, and so by the Factor Theorem of
algebra ¢t — 1 must be a factor of P (t). Now,

tB3—6t2+t+4
; Jg + =t — 5t —4,

whence we obtain
Pa(t)=0 = (t—1)(#*—-5t—4)=0 = t=1 or t*—5t—-4=0,

and so Pa(t) = 0 implies that

t€{5+\/ﬁ 5— /41 1}

2 2
By Theorem the eigenvalues of A are

54/l 5 /4l

A A A3=1

1 9 2 2 ) 3 )
so by Theorem the maximum value of  on S? is \; (approximately 5.702) and the minimum
value is Ay (approximately —0.702). |

Example 7.33. Find the maximum and minimum value of the function
fz,y) = 2® + 2y + 2y°
on the ellipse 22 + 3y? = 16.

Solution. We effect a change of variables so that, in terms of the new variables, the ellipse
becomes a unit circle. In particular we declare u and v to be such that 4u = = and 4v/ V3 = Y.
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OPERATOR THEORY

8.1 — THE ADJOINT OF A LINEAR OPERATOR

Many of the results developed in this chapter are of a technical nature which will be pressed
into service in due course to uncover some of the most wondrous and practical properties of
finite-dimensional vector spaces and the linear mappings between them.

Definition 8.1. Let (V,{)v) and (W, { )w) be inner product spaces over the field F, and let
L e L(V,W). The adjoint of L is the mapping L* € L(W,V) satisfying

(Lv), w)w = (v, L*(W))y
forallv eV and w e W.

Theorem 8.2. Let (V, ( )v) and (W, ( )w) be inner product spaces over F. For every L € L(V, W)
there ezists a unique adjoint L* € LW, V).

Given an inner product space (V,()) and an operator L € L(V), the adjoint of L is the
unique operator L* € L(V) satisfying

(L(u),v) = (u, L*(v)) (8.1)

for all u,v e V.

Proposition 8.3. Let (V,()) be an inner product space over F. If L,L € L(V) and ¢ € F,
then

Proof.
Proof of Part (2). Let u,v € V be arbitrary. By definition we have

(L(v),w) = (v, L*(w)),
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and thus
(L*(u),v) = (u, L(v)).
This shows that L is the adjoint of L*; that is, L = (L*)*.

Proof of Part (4). Let u,v € V. By definition

((LoL)(u).v) = (u. (Lo L) (v)) (8.2)
and

(L(u),v) = (u, L*(v)). (8.3)
Substituting L(u) for u in (81)), and L*(v) for v in (8.3), we obtain
(L(L(w),v) = (L(w),L*(v)) and (L(u),L*(v)) = (u, L*(L*(v))),

and hence ) )

((LoL)(u),v) = (u,(L* o L*)(v)).

Comparing this equation with (8.2)), and recalling that u,v € V' are arbitrary, we see that both
(Lo L)* and L* o L* are adjoints of L o L. Since the adjoint of a linear operator is unique, we
conclude that

(LoL) =L*oL*
as desired.
Proofs of the other parts of the proposition are left as exercises. |

Definition 8.4. Let A € F"*". The adjoint (or conjugate transpose) of A is the matrix
A* € F™™ given by A* = (A)T.

If A = [a;j]mxn, then the ij-entry of A* is [A*];; = @;;. It is an easy matter to verify that

(A) =(AT)

(that is, the transpose of A is the same as the conjugate of AT), so there would be no ambiguity
if we were to write simply AT. Hence,

A =RT-TAT) - (A)

. (8.4)
Also we define
A** — (A*)*'

Proposition 8.5. If A,B € F"*" and ¢ € F, then
L. (cA)* =cA*

2. A=A

3. (A+B)*=A*+B*

4. (AB)* = B*A*
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Proof.

Proof of Part (2). Liberal use of equation (8.4]) is prescribed here, as well as properties of the
transpose and conjugation operations established in chapters 2 and 6, respectively. We have
A*= (A7), and so A* = A". Now,

AR — (A*)* — (A*)T — (AT)T _ A,

as desired.

Proof of Part (4). For this we must recall Proposition as well as equation (8.4):
(AB)"= (AB) =(AB)T=BTAT=BTAT = (B) (A) =B*A".

Proofs of the other parts of the proposition are left as exercises. |

Theorem 8.6. Let (V, () be a finite-dimensional inner product space with ordered orthonormal

basis O, and let A, L € L(V). Then A = L* if and only if [A], = [L]}.

Proof. Let [ | represent | |p for simplicity. Suppose that A € £(V) is such that [A] = [L]*,
where

Al =[] & A= & [A=[L]".
Now, for any u,v € V we have, by Theorem
(L(u),v) = [V[*[L(u)] = [v]"([Z][u])

I
—
a_—
<.

*
_*
&
N—"
—
£

and therefore A = L*. [ ]

With this theorem we have a way of finding the adjoint of a linear operator: given an
operator L € L(V), find an orthonormal basis O for V (perhaps using the Gram-Schmidt
Orthogonalization Process), then determine [L]o (the matrix corresponding to L with respect
to O) using Corollary and then obtain [L]}, by taking the conjugate of the transpose of
[L]o. The matrix [L]}, defines a new operator L* € £(V') that will in fact be the adjunct of L.
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8.2 — SELF-ADJOINT AND UNITARY OPERATORS

Definition 8.7. Let (V,()) be an inner product space over F. A linear operator L € L(V') is
self-adjoint with respect to the inner product () if L* = L. A matriz A € F"*" is self-adjoint
ifA* = A.

Observe that if A € R"*", then A is self-adjoint if and only if A = AT, since
A=A"=AT=A",
That is, “self-adjoint” and “symmetric” mean the same thing in the context of matrices with
real-valued entries. It is for this reason that a self-adjoint operator on an inner product space
over specifically the field R may also be called a symmetric operator. (Meanwhile, physicists

especially are fond of calling a self-adjoint operator on an inner product space over C a hermitian
operator.)

Theorem 8.8. Let (V,()) be an inner product space over F, and let L € L(V). Then L is
self-adjoint if and only if

(L(u),v) = (u, L(v))
for allu,veV.

Proof. Suppose that L is self-adjoint, so that L* = L. From (8.1) we have

(L(u),v) = (u, L*(v)) = (u, L(v))

for all u,v € V, as desired.
Now suppose that

(L(u),v) = (u, L(v)) (8.5)
for all u,v € V. By Theorem [8.2] L* is the unique linear operator on V' for which
(L(u),v) = (u, L*(v)) (8.6)

holds for all u,v € V. Comparing (8.5) and (8.6)), it is clear that L* = L, and therefore L is
self-adjoint. ]

The following proposition more firmly establishes the connection between the concepts of
self-adjoint operators and self-adjoint matrices.

Theorem 8.9. Let (V,()) be a finite-dimensional inner product space over F with ordered
orthonormal basis O, and let L € L(V). Then L is a self-adjoint operator if and only if

(Lo = [L]o-

Proof. Let O = (wy,...,w,), and let | | represent | |o for simplicity. Suppose that L is
self-adjoint. By definition [L] € F"*" the matrix corresponding to L with respect to O, satisfies

[L][v] = [L(v)] (8.7)
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for all v € V. By Corollary

and so for any v € V

[T | Ew)lT ] (L(w1),v)
(L] [v] = L V= = :
| [L(wa)]T [L(w,)]" [V] (L(wn), v)
[ (w1, L(v)) (w1l " [L(v)] [wa] "
= : = : = [L(v)],
| (W, L(V)) wa TILV] | [wal

where the third and fifth equalities follow from Theorem [7.23] and the fourth equality is owing
to L being self-adjoint. But the n x n matrix

[wa] "
c Ran
[wn] "
is the identity matrix I,,, and so we obtain
[L]" [v] = [L(v)]- (8.8)

Taking the conjugate of both sides of (8.8)) then yields the equation
[L]T[v] = [L(v)] (8.9)

for all v € V. From (8.7 and we conclude that [L] and [L]T are matrices corresponding
to L with respect to O. By Corollary the matrix corresponding to L with respect to O is
unique, and therefore it must be that

(L] =[L]" =[]}

as desired.
For the converse, suppose that [L] = [L]*. We have

and so by Theorem we find that, for all u,v € V,

(L(w),v) = [L(w)] V] = (L)) V] = [T (2] [v
= [u]"[Z][v] = [u] " [L(v)] = (u, L(v)).
Therefore L is a self-adjoint operator. |

In Theorem [8.9] if we let F = R in particular, then the entries of the matrix [L]o are real
valued, in which case

Lo = [Llo
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and we obtain the following quite readily.

Corollary 8.10. Let (V,()) be a finite-dimensional inner product space over R with orthonormal
basis O. Then L € L(V) is a self-adjoint operator if and only if [L]p = [L]5.

A self-adjoint operator L on an inner product space over R is called a symmetric operator
precisely because the matrix corresponding to L with respect to an orthonormal basis is a
symmetric matrix.

Corollary 8.11. Let (V,()) be a finite-dimensional inner product space over F with orthonormal
basis O. If L € L(V) is a self-adjoint operator, then [L*], = [L]}.

Proof. Suppose that L is self-adjoint. Then L = L* and [L], = [L]§), whereupon it follows
trivially that [L*], = [L]5. |

Lemma 8.12 (Polarization Identity). Let (V,()) be an inner product space over F. If
L e L(V), then

(L v)uv) — (L - v),u = v) = 2[(L(w), v} + (L(v), u)]
for allu,veV.

Proof. Suppose that L € L(V), and let u,v € V. We have
(Llu+v),u+v) = (L(u),u) + (L(u),v) + (L(v),u) + (L(v), V)

and

(L(u=v),u=v) = (L(u),u) = (L(u),v) = (L(v),u) + (L(v), V).
Subtraction then yields

(Llu+v),u+v)—(L(u—v),u—v) =2(L(u),v) + 2(L(v),u),

the desired outcome. [ ]

Proposition 8.13. Let (V,()) be an inner product space over F, and let L € L(V).
1. Suppose F = C. If (L(v),v) =0 for all v eV, then L = Oy.

2. Suppose F = C. Then L is self-adjoint if and only if (L(v),v) € R for allv € V.
3. If L is self-adjoint and (L(v),v) =0 for allv € V, then L = Oy.

Proof.
Proof of Part (1). Suppose that (L(v),v) =0 for all v € V. From the polarization identity of
Lemma B.12] we obtain

(L(u),v) +(L(v),u) =0 (8.10)

for all u,v € V. Thus we have, for all u,v € V,
(L(u),iv) + (L(iv),u) = —i(L(u),v) +i(L(v),u) =0,

whence

— (L(u),v) + (L(v),u) = 0. (8.11)
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Adding equations ({8.10) and (8.11]) then gives
(L(v),u) =0

for all u,v € V. Letting v be arbitrary and choosing u = L(v), we obtain
(L(v), L(v)) =0,
and thus L(v) = 0. Therefore L = Oy.

Proof of Part (2). Suppose that L is self-adjoint. Let v € V' be arbitrary. We have

(L(v),v) = (v, L(v)) = (L(v), V),
which shows that (L(v),v) € R.
For the converse, suppose that (L(v),v) € R for all v € V. Then
(L(v),v) = (v, L(v)),
whence we obtain
<L<V)7V> - <V7 L(V>> - <V7 L*(V» - <V7 L(V>> = <V7 (L* - L)(V>> =0.
That is,
((L* = L)(v),v) =0
for all v € V, and so by Part (1) we conclude that L* — L = Oy. Therefore L* = L.

Proof of Part (3). Suppose L is self-adjoint and (L(v),v) = 0 for all v € V. The conclusion
follows by Part (1) if F = C, so we can assume that F = R. By the polarization identity we
obtain

(L(u),v) + (L(v),u) =0,
whereupon commutativity gives

(L(u),v) + (u, L(v)) =0,
and finally self-adjointness delivers

(L(u),v) + (L(u),v) =0.

So (L(u),v) =
(L(u), L(w))

0 for all u,v € V. Letting u be arbitrary and setting v = L(u), we find that
0, and thus L(u) = 0. Therefore L = Oy. [

Definition 8.14. Let (V,()) be an inner product space over F. An operator L € L(V) is

unitary with respect to the inner product () if L* = L™'. An invertible matriz A € F™" is
unitary if A* = A~L,

It is common to call a unitary matrix A with real-valued entries an orthogonal matrix,
and a unitary operator on an inner product space over R an orthogonal operator. Note that a
unitary operator L on V' is invertible: if v € V is such that L(v) = 0, then

(v,v) = (L(v), L(v)) = (0,0) = 0
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implies v = 0, so that Nul(L) = {0} and by the Invertible Operator Theorem we conclude that
L is invertible.

Theorem 8.15. Let (V,()) be a finite-dimensional inner product space over F with orthonormal
basis O, and let L € L(V). Then L is a unitary operator if and only if [L]% = [L]5"

The proof of Theorem is much the same as the proof of Theorem [8.9] and so it is left as

a problem.

Theorem 8.16. Let (V,()) be an inner product space over F, and let L € L(V'). The following
statements are equivalent:

1. L is a unitary operator.

2. If ||v|| = 1, then ||L(v)|| = 1.

3. |L(v)|| = ||v]| for allv e V.

4. (L(u), L(v)) = (u,v) for allu,v e V.

Proof.
(1) = (2). Suppose that L is a unitary operator. Fix v € V such that ||v|| = 1. Then
IL(V)II* = (L(v), L(v)) = (v, L*(L(v))) = {v, LH(L(V))) = (v,v) = |v[]* =1,

and hence || L(v)| = 1.

(2) — (8). Suppose that |L(v)|| =1 for all v € V such that ||v|]|=1. FixveV. Ifv=0,
then ||L(0)|| = ||0|| obtains immediately, so suppose that v # 0. Then v = v/||v|| is a vector in
V such that ||v|| = 1, and so ||L(V)|| = 1 by hypothesis. Now,

L) = [ ZAVIR) | = IVIHIZE)I = [V

Therefore ||[L(v)|| = ||v]| for all v e V.

(3) = (4). Suppose that ||[L(v)| = ||v||, or equivalently (L(v), L(v)) = (v, V), for all v € V.
Fix u,v € V. By the Parallelogram Law given in Theorem [7.9]

IL() + LW)|P + |L(u) = Lv)[* = 2| L(w)|]” + 2| L(v)[I* = 2[[u]]* + 2]} v|]%,
whence
I1L(w) + LE)|* + [[L(a = v)|[* = [[L(w) + LE)[]* + [Ju = v [ = 2]lul* + 2||v]?,

and then
(L(u) + L(v), L(u) + L(v)) + (u—v,u—v) = 2(u,u) + 2(v, v). (8.12)
Since

(L(w) + L(v), L(u) + L(v))

(L(u), L()) + (L(u), L(v)) + (L(v), L(w)) + (L(v), L(v))
(w,u) + (L(u), L(v)) + (L(v), L(w)) + (v, V)

and
(u—v,u—v)=(u,u) — (u,v) — (v,u) + (v,v),
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from we obtain
(L(u), L(v)) + (L(v), L(u)) = (u,v) + (v,u). (8.13)

If F = R, then the inner product is commutative and (8.13) gives (L(u), L(v)) = (u,v) as
desired. If F = C, then substitute 7u for u in (8.13)) to obtain

(L(iu), L(v)) + (L(v), L(iu)) = (iu,v) + (v, iu),
so by the linearity of L, Axiom IP2 in Definition and Theorem [7.2)3),
i(L(a), L(v)) = i(L(v), L(w)) = i(u, v) = i(v, ),

and thus
(L(u), L(v)) = (L(v), L(u)) = (u,v) — (v, u). (8.14)

Finally, adding (8.13) and (8.14) gives (L(u), L(v)) = (u,v) once again.

(4) — (1). Suppose that (L(u), L(v)) = (u,v) for all u,v € V. Thus, for any u,v € V,
(L(u),v) = (L(w), L(L7H(v))) = (u, L7 (v)),

which shows that L=! = L* and therefore L is a unitary operator. |

Proposition 8.17. If A,B € F**" are unitary and ¢ € F, then A=, cA, A+ B, and AB are
unitary.

Proof. Suppose that A, B € F"*" are unitary and ¢ € F. By Proposition [8.5(2) we have
(Afl)* — (A*)* — A** — A = (Afl)fl;
that is, the adjoint of A~! equals the inverse of A=!, and therefore A~! is unitary. |

Proposition 8.18. If O and O’ are two ordered orthonormal bases for an inner product space
(V,()) overF, then the change of basis matriz Ioo is a unitary matric.

Proof. Suppose that O = (wy,...,w,) and O’ = (w],...,w/,) are each orthonormal bases for
an inner product space (V, () over F. Then by Theorem [7.23

(u,v) = [u]o [V]o

for all u,v € V, and also

1, ifi=y
Wi W) = 01 = {0, ifi
By Theorem {4.27
Ioo = [[Wl]O’ [Wn]O’i|7
and so, letting I = Ipe for brevity,
[wi]o
' = : [WO’ mo]-

[Wnlo
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Thus the ij-entry of ITT is

[ITT} i [Wi]g’m@ = <Wi’wj> - 5” - [I"]U

for all 1 <4,j <n, and therefore I"'T = I,,. Now, since I is invertible by Proposition [4.31] we
have

I'i=1, & I'l=1, &« I'NI''=LI"" & I'=1I"

and hence I* = I"!. Therefore Ipor is a unitary matrix. [ |
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8.3 — NORMAL OPERATORS

Definition 8.19. Let (V,()) be an inner product space over F. An operator L € L(V) is
normal if
LoL*=L"olL.

Proposition 8.20. All self-adjoint and unitary operators are normal operators

Proof. Suppose L is a self-adjoint operator on (V,()). Then L* = L by definition, which
immediately implies that
LolL*=L"oL,
and hence L is normal.
Now suppose that L is a unitary operator on (V, (). Then L* = L~! by definition, so that

Lol*=LoL'=I,=L'oL=L*"0cL

and hence L is normal. [ |

Proposition 8.21. Let (V,()) be an inner product space over F. Then L € L(V) is a normal
operator if and only if ||L(v)|| = ||L*(v)|| for allv € V.

Proof. Suppose that L € L(V) is a normal operator. Let v € V. Then
IZWIP = (L(v), L(v)) = (v, L*(L(v))) = (v, (L 0 L)(v))) = (v, (Lo L")(v))
— (v, L (V) = <L<L* V)V) = (L), D) = [ W),

and therefore | L(v)|| = || L*(v)]].
Conversely, suppose that | L(v)| = [[L*(v)]| for all v € V', or equivalently

(L(v), L(v)) = (L*(v), L*(v))
for all v € V. By Proposition
(LoL* —L*oL) =(Lo L") — (Lo L) =L oL~ L*oL* = Lo L*— L*o L,
which shows that L o L* — L* o L is self-adjoint. Now, for any v € V|
(v,(L* o L)(v)) = (v, L*(L(v))) = (L(v), L(v)) = (L*(v), L*(v))
= (v, LA (¥)) = (v, (Lo L)(v)),

and thus
((LoL*—L*oL)(v),v)y={((LoL*)(v),v) — ((L* o L)(v),v) = 0.

It follows by Proposition [8.13|(3) that
LoL*—L"oL = Oy,
and therefore Lo L* = L*o L. |
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Proposition 8.22. Let (V,()) be an inner product space over F, and let L € L(V') be a normal
operator. If U is a subspace of V that is invariant under L, then UL is also invariant under L*.

Proof. Suppose that U is a subspace of V' that is invariant under L. Let q € L*(U%), so there
exists some p € Ut such that L(p) = q. Now, p € Ut implies that (u,p) = 0 for allu € U.
On the other hand L(u) € U for all u € U, and so

(L(u),p) =0
for all u € U. Now,
(L(u),p) =0 < (u,L*(p))=0 & (u,q)=0,

which demonstrates that q L u for all u € U, and hence q € ULt. We conclude that
L*(U+) C U+ and therefore U+ is invariant under L*. |
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8.4 — THE SPECTRAL THEOREM

Recall from the previous chapter that if (V,()) is an inner product space over F, then a
linear operator L on V is called self-adjoint if

(L(u),v) = (u, L(v))

for all u,v € V. As the first part of the next theorem makes clear, any linear operator on
a nontrivial inner product space (V,()) over the field C, in particular, will always have an
eigenvector. If the underlying field of (V, ( )) is R, however, then something more is required for
the existence of an eigenvector to be assured: namely, the operator must be self-adjoint.

Theorem 8.23. Let (V,()) be a vector space over F of dimension n € N, and let L € L(V).

1. If F = C, then L has an eigenvector.
2. If F = R and L is self-adjoint with respect to some inner product on V', then L has an
etgenvector.

Proof.

Proof of Part (1). Suppose F = C. Let B be an ordered basis for V| and let [L]z be the matrix
corresponding to L with respect to B. Then [L]z € C"*™ since V is a vector space over C, and
by Proposition [6.29(1) [L]s has at least one eigenvalue A € C. Now Proposition implies
that X is an eigenvalue of L, which is to say there exists some v € V such that v # 0 and
L(v) = Av. Therefore L has an eigenvector.

Proof of Part (2). Suppose F = R and L is self-adjoint with respect to some inner product on V.
By Corollary there exists an ordered orthonormal basis O for V, and so [L]o € Sym,,(R)
by Corollary . It then follows by Theore that [L]o has an eigenvalue A € R with a
corresponding eigenvector in R™, whereupon Proposition implies that ) is an eigenvalue of
L. Therefore L has an eigenvector. ]

Definition 8.24. Let V' be a vector space over I, let U be a subspace, and let L € L(V) be a
linear operator. We say that U is invariant under L (or L-invariant) if L(U) C U.

Recall that L(U) = Img(L), and notice that a subspace U of vector space V' is invariant
under L € L(V) if and only if L|y € L(U), where as usual L|; denotes the restriction of the
function L to the set U. Many times in proofs, however, we will continue to use the symbol L
to denote L|y, after writing either L € L(U) or L : U — U, say, to make clear that the domain
of L is being restricted to U.

Proposition 8.25. Let (V,()) be an inner product space over IF, and let L € L(V') be a normal
operator.

L. If v €V s an eigenvector of L with corresponding eigenvalue A, then v is an eigenvector of
L* with eigenvalue .

2. If vi,ve € V are eigenvectors of L with corresponding eigenvalues A\, Ao € F such that
/\1 7é /\2, then Vi 1 Vo.
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Proof.

Proof of Part (1). Suppose that v € V is an eigenvector of L with corresponding eigenvalue A,
so that L(v) = Av. Define A = L — Aly, and note that A € £L(V'). In fact A just so happens to
be a normal operator: recalling Proposition and noting that I, = Iy, for any u € V' we have

(Ao A*)(u) = A((L* — My)(u)) = A(L*(u) — Au) = L(L*(u) — Au) — A\(L*(u) — M)
= (Lo L*)(u) — AL(u) — AL*(u) + Au
and
(A*o A)(u) = A*((L — My )(u)) = A*(L(u) — A) = L*(L(u) — Au) — A(L(u) — \u)
= (L*o L)(u) — AL*(u) — AL(u) + A\u.
Now, since L o L* = L* o L, we find that
AoA*=LoL*— XL —AL"+ M\, =A* oA
and hence A is normal. Forging on, by Proposition we obtain
I(L* = AL ) ()| = (L = Ay) (V)| = [(L = Av)(v)[| = |1 L(v) = Av]| = [|o]| = 0,
which implies that B
(L* = A\y)(v) =0.
That is, L*(v) = Av.
Proof of Part (2). Suppose that vi, vy € V are eigenvectors of L with corresponding eigenvalues

A1, Ay € F such that A\ # A\y. By Part (1), vy, vy € V are eigenvectors of L* with corresponding
eigenvalues \; and \g, respectively. Now,

()\1 - >\2)<V1,V2> = )\1<V1,V2> - )\2<V1,V2> = <)\1V1,V2> - <V1,X2V2>
= (L(v1), va) — (v1, L*(v2)) = 0,

and since A\; — Ay # 0 we obtain (v, vy) = 0. Therefore v; L v,. [ |

Whereas the proposition above establishes some eigen theory concerning normal operators,
the one below performs a similar favor for self-adjoint operators. The latter will be used to
prove the first part of the upcoming Spectral Theorem, the former the second part.

Proposition 8.26. Let (V,()) be an inner product space over F, and let L € L(V) be a
self-adjoint operator.

1. All eigenvalues of L are real.
2. If v is an eigenvector of L and u € V' is such that u L v, then L(u) L v also.

Proof.
Proof of Part (1). Let X be an eigenvalue of L. Then there exists some v € V' such that v # 0
and L(v) = Av. Because v # 0 we have (v,v) > 0, and because L is self-adjoint we have

(L(v),v) = (v, L(v)).
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Now,
(L(v),v) = {(v,L(V)) & Ov,v)=({V,Av) & Mv,v)=Xv,v) & A=)

where the last equation obtains upon dividing by (v, v). Since only a real number can equal its
own conjugate, we conclude that A € R.

Proof of Part (2). Suppose that v is an eigenvector of L and u € V' is such that u L v. Then
L(v) = Av for some X € F, and (u,v) = 0. By Theorem [7.2[3),

0= /_\<11, V> = <1_1, )‘V> = <u7 L(V)> = <L(u)7V>7

which demonstrates that L(u) L v. |

It is a trivial matter to verify that if L is a normal (resp. self-adjoint) operator on V', and a
subspace U of V is invariant under L, then L|y is a normal (resp. self-adjoint) operator on U.
This simple fact is assumed in the proof of the following momentous theorem.

Theorem 8.27 (Spectral Theorem). Let (V, () be an inner product space over F of dimension
n € N.

1. Let F =R. Then L € L(V) is a self-adjoint operator if and only if V' has an orthonormal
basis consisting of the eigenvectors of L.

2. Let F =C. Then L € L(V) is a normal operator if and only if V has an orthonormal basis
consisting of the eigenvectors of L.

Proof.
Proof of Part (1). We will first apply induction on dim(V') to prove that V' must have an
orthogonal basis consisting of eigenvectors if L € L£(V) is self-adjoint, whereupon it will be easy
to see that V' has an orthonormal basis consisting of eigenvectors.

Let dim(V) = 1, and suppose L is self-adjoint. Then L has an eigenvector w by Theorem
B-23|(2), and thus B = {w} is a basis for V by Theorem [3.54(1) that is clearly orthogonal.

Suppose Part (1) of the statement of the theorem is true for some n € N. Let (V| ()) be an
inner product space over R of dimension n + 1, and let L : V' — V be a self-adjoint operator.
Again, L has at least one eigenvector wy, so that L(wgy) = Awq for some A € R. By the
Gram-Schmidt Process there exist vectors uy,...,u, € V such that B = {wg,uy,...,u,} is an
orthogonal basis for V.

Let W = Span{wy} and U = Span{uy,...,u,}. For any v € W there exists some ¢ € R
such that v = cwg, whereupon we obtain

L(v) = L(cwg) = cL(wq) = ¢(Awg) = (cA\)wg € W (8.15)

and we see that W is invariant under L. Since U = W' by Proposition [7.18] it follows by
Propositions and that U is also invariant under L.

Now, dim(U) = n because {uy,...,u,} is a basis for U, and since (U, ( )) is an n-dimensional
inner product space over R and L : U — U is a self-adjoint operator, it follows by the inductive
hypothesis that U has an orthogonal basis {w, ..., w,} consisting of eigenvectors of L € L(U).
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Thus U = Span{w, ..., w,}, where the vectors wy, ..., w, are mutually ortho-gonal. Moreover,
for each 1 < k < n,

wr,elU = WkEVVL = <Wk,W0>:O,

and so wy,...,w, are all orthogonal to wy,. Hence O = {wy,...,w,} is a set of mutu-
ally orthogonal vectors, and by Lemma we conclude that the vectors in O are linearly
independent. Observing that |O] =n + 1 = dim(V), Theorem [3.54(1) implies that O is a basis
for V. That is, O is an orthogonal basis for V' consisting of eigenvectors of L € L(V).

So by induction we find that, for any n € N, if V' is an inner product space over R of
dimension n and L is a self-adjoint operator on V', then V has an orthogonal basis {wy,...,w,}
consisting of eigenvectors of L. Defining

. Wi
W, = ——
[[wi|
for 1 < k <n, then {Wy,...,w,} is an orthonormal basis consisting of eigenvectors of L.
For the converse, suppose that V' has an orthonormal basis O = {w,...,w,} consisting

of the eigenvectors of L € L£(V'). Since V is a vector space over R, it follows that there exist
Ak € R such that L(wg) = A\gwy, for all 1 <k < n. Let u,v € V, so that

n n
u= Z apwr and v = Z bpwy,
k=1 k=1
for some ay, by € R, 1 < k < n. Now, since A\, = g,

<L(U), V> = <Zk ak)\kwk, V> = Zk )‘k<akwk7 V> = Zk )\k <akwk7 ZZ bgWg>
- Zk Ze Ae{apwy, bywy) = Zk A {ap Wi, bpwy) = Zk(akwk, Mebp W)

= Zk Zewéwe, b wy) = <Z€ arwy, Zk /\kbkwk> = (u, L(v))

and therefore L is self-adjoint.

Proof of Part (2). Let dim(V) = 1, and suppose L is normal. Then L has an eigenvector w by
Theorem [8.23(1), and thus B = {W} is an orthonormal basis for V' by Theorem [3.54(1).

Suppose Part (2) of the statement of the theorem is true for some n € N. Let (V,()) be
an inner product space over C of dimension n + 1, and let L € £(V') be normal. Again, L has
at least one eigenvector wy (which we can assume to be a unit vector), so that L(wy) = Awyg
for some A € C. By the Gram-Schmidt Process there exist vectors uy,...,u, € V such that
B = {wg,uy,...,u,} is an orthogonal basis for V.

Let W = Span{wg} and U = Span{uy,...,u,}. For any v € W there exists some ¢ € C
such that v = cwy, whereupon shows that W is invariant under L. But W is also
invariant under L*, since by Proposition [8.25(1) we have

L*(ewq) = cL*(wo) = c(Awp) = (cA)wo € W.

Now, since L* € L(V') is normal, by Proposition we conclude that W+ is invariant under
L** = L, where W+ = U by Proposition [7.18]

Now, (U, ()) is an n-dimensional inner product space over C and L € L(U) is a normal
operator, so by the inductive hypothesis U has an orthonormal basis {wy, ..., w,} consisting
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of eigenvectors of L. Thus U = Span{w, ..., w,}, where the vectors wy, ..., w, are mutually
orthogonal, and as with the proof of Part (1) we find that wy,..., w, are each orthogonal to
wo. Hence O = {wy,...,w,} is a set of mutually orthogonal vectors which, as before, we find

to be a basis for V. In particular, O is an orthonormal basis for V' consisting of eigenvectors of
L € £(V). By induction we conclude that Part (2) of the theorem is true for all n € N.
Conversely, suppose that O = {wy,...,w,} is an orthonormal basis for V' consisting of
eigenvectors of L. Thus there exist A, € C such that L(wy) = A\ywy, for all 1 < k < n, and by
Proposition M(l) we also have L*(wy) = \ywy, for all 1 < k < n. Let v € V, so that

v=>aw
for some ay, . .., a, € C. Now, -
(L)L) = (37 ahws, Y adews) = S 3™ (aphewr, ahwe)
= Zk ZE NeAe{arWi, agwy) = Zk Zz Aehe{aewe, apwy,)
=3 D fahewe achewr) = D0 D" {aeL* (we), anL* (wi)
= (3, Lrlarwi). 3, L (ws)) = (L (v). L' ().

where the fourth equality is justified since (apwy, aywy) is real-valued for all 1 < k, ¢ < n:

0, ifk#¢

<%mewwz{mm k=0

Hence we have

IL(V) | = VAL(v), L(v)) = V(L (v), L*(v)) = [ L*(V)]],

and so by Proposition we conclude that L is a normal operator. |

Corollary 8.28. Let (V,()) be a nontrivial finite-dimensional inner product space over F, and
let Ai,..., A\m be the distinct eigenvalues of L € L(V). If L is self-adjoint, or if L is normal
and F = C, then

V=E,(\M)® - ®EL(An). (8.16)
Moreover, E(N;) L Er(\;) for all i # j.

Proof. Suppose that L is self-adjoint, or L is normal and F = C. By the Spectral Theorem
there exists an orthonormal basis O = {wy,..., w,} consisting of the eigenvectors of L, and
thus follows by Theorem [6.40}

Next, let u € Er(\;) and v € Er(\;) for 1 < ¢ < j < m. If either u =0 or v = 0, we
obtain u L v. Suppose that u,v # 0. Then u is an eigenvector of L with corresponding
eigenvalue )\;, and v is an eigenvector of L with corresponding eigenvalue A;. Since \; # A; and
L is a normal operator, by Proposition m@) we conclude that u L v once again. Therefore
ErL(N\) L EL(A)). |
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Example 8.29. Let (V, ()) be an n-dimensional inner product space over F, and suppose that
L € L(V) is a self-adjoint operator. By Proposition L is also a normal operator, and so by
the Spectral Theorem (regardless of whether F is R or C) there exist eigenvectors vy,...,v,
such that B = (vi,...,V,) is an ordered basis for V. By Proposition [8.26(1) the corresponding
eigenvalues A1, ..., \, must be real numbers, and so for each 1 < k < n we have \; € R such
that L(vy) = Arvg. By Corollary the B-matrix of L is

Ls = [[Lv0)]g - [LOva)]g) = [Pvil - vl

1 0 M0 - 0
0 0 0 A .-~ O
Z[)\1[V1]B )\n[vn}g}: A\ | A\, 5 _ ; E2 o
0 1 0 0 - A\

That is, [L]g is a diagonal matrix with real-valued entries, which makes it especially easy to
work with in applications.

We see, then, that the Spectral Theorem provides a means of diagonalizing self-adjoint

operators on nontrivial inner product spaces, and even normal operators if the underlying field
is C.

Proposition 8.30. If A € F™*" is self-adjoint, then there exists a unitary matriz U such that
U~'AU is a diagonal matriz.

Proof. Suppose that A € F"*" is self-adjoint. Let £ be the standard basis for F”, and let
L € L(F™) be the operator given by [L(x)]s = A[x]e, so that the matrix corresponding to L
with respect to € is [L]¢ = A. Since £ is an orthonormal basis and [L]¢ is self-adjoint, by
Theorem the operator L is self-adjoint, and therefore L is normal by Proposition [8.20, By
the Spectral Theorem there exists an ordered orthonormal basis O consisting of the eigenvectors
of L, and so [L]o is found to be a diagonal matrix by Corollary [£.21]

Consider I¢p, the change of basis matrix from £ to O. Both bases are orthonormal, so I¢p
is a unitary matrix by Proposition [8.18] and

[Llo = Leo[Ll eIz (8.17)

by Corollary |4.33] Now, the inverse of a unitary matrix is also unitary by Proposition |8.17] so if
we let U = I/, then U is unitary. Also we have U™! = I¢¢ is unitary. From (8.17)) comes

U AU = [L)o,

and the proof is done since [L]o is diagonal. |
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CANONICAL FORMS

9.1 — GENERALIZED EIGENVECTORS

Recall that a vector v # 0 is an eigenvector of a linear operator L : V — V if L(v) = Av for
some scalar A\, where

Liv)=XAv & Lv)=Av=0 & L(v)=Ay(v)=0 & (L—-Xy)(v)=0. (9.1

We expand on this idea as follows.

Definition 9.1. Let V' be a vector space over F, L € L(V), and A € F. If v € V is a nonzero
vector such that (L — Xy )™"(v) = 0 for some n € N, then v is a generalized eigenvector of
L corresponding to .

From is it clear that the set of eigenvectors of L is included in the set of generalized
eigenvectors of L, and any eigenvalue corresponding to an eigenvector necessarily also corresponds
to a generalized eigenvector. Suppose that v # 0 is a generalized eigenvector of L corresponding
to A. Let

n =min{k € N: (L — \Iy)*(v) = 0}.

If n > 2, then w = (L — A\I)""!(v) is a nonzero vector in V', and
0= (L—My)"(v)=(L—-Ay)((L—X)"'(v)) =(L—Xy)(w)=L(w) — Aw

implies that L(w) = Aw. This result obtains immediately if n = 1, and so it follows that A is an
eigenvalue of L with (L — Ay )"~!(v) as a corresponding eigenvector. We see that any eigenvalue
corresponding to a generalized eigenvector necessarily also corresponds to an eigenvector. It is
because a scalar A\ corresponds to an eigenvector if and only if it corresponds to a generalized
eigenvector that we make no distinction between “eigenvalues” and “generalized eigenvalues.”

Definition 9.2. Let V' be a vector space over F and L € L(V'). Suppose X € F is an eigenvalue
of L. The set
Ki(A) ={veV:(L-Xy)"(v)=0 for somen € N}

is the generalized eigenspace of L corresponding to \.
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To prove the following proposition, note that if W is an L-invariant subspace of a vector space
V over F, then so too is Img(L), for the simple reason that L(W) C W implies L(L(W)) C W,
and hence L(Img(L)) C W. Also note that, for any f € P(F), the L-invariance of W implies
the f(L)-invariance of .

Lemma 9.3. Let V be a vector space over F, L € L(V), and A € F. For anyn € N,
(L—\y)" oL =Lo(L—\y)"
Proof. When n = 1 we have, by Theorem [4.50]
Lo(L—My)=LoL—-ALoly=LoL—-\XyoL=(L—-My)olL.

Suppose the conclusion of the lemma is true for some fixed n € N. That is, if M = L — Ay,
then L o M™ = M" o L. Now, making use of Theorem [4.49]

LoM"™ ™ =(LoM™"oM=(M"oL)oM=M"o(LoM)
=M"o(MoL)=(M"oM)oL=M""oL,
and therefore L o M™ = M™ o L for all n € N by induction. |

Proposition 9.4. Let V' be a vector space over F and L € L(V). Suppose that X\ € F is an
ergenvalue of L. Then

1. Kr(X) is an L-invariant subspace of V' such that Er(\) C Kr()).
2. For any p € F such that u # X, the operator L — ply : Kp(\) — V' is injective.
3. If p is an eigenvalue of L such that u # X, then Kp(u) N Kr(\) = {0}.

Proof.
Proof of Part (1). We have K (\) # @ since 0 € K1 (\). Let u,v € K1()), so that

(L—Xy)™(u)=0 and (L—Ay)"(v)=0
for some m,n € N. Then
(L= My)™ (a4 v) = (L — \y)™" () + (L — My)™"(v)
= (L= Ay)"((L = My)™()) + (L = My)" ((L = ALv)"(v))
= (L= AIy)"(0) + (L = My)™(0) =0+ 0 =0,
and we conclude that u +v € K;(\). If c € F, then
(L —My)"™(cu) =c¢(L — Ay)"(u) =c0=0

shows that cu € K (\). Since K (\) is a nonempty subset of V' that is closed under vector
addition and scalar multiplication, we conclude that it is a subspace of V. That EL(\) C KL(\)
is obvious.

Next, let v € L(KL(A)), so there is some u € K () such that L(u) = v. There exists some
n € N such that (L — Aly)"(u) = 0, and hence by Lemma

(L= AIy)"(v) = (L — Aly)"(L(u)) = L((L — AMy)"(u)) = L(0) = 0.
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Therefore v € K1, (\), and we conclude that L(KL (X)) C Kp()\).

Proof of Part (2). Let v € Kp(\) such that (L — uly)(v) = 0. Let
n=min{k € N: (L — AIy)*(v) = 0}.

We have
(L — )\[V)( (L —My) ( )) = (L—Xy)"(v)=0,

so that (L — AIy)""}(v) € E(\). By Lemmal9.3
(L — ply)((L = Xy)" (V) = (L = My)"™~ 1((L plyv)(v)) = (L = ALy)""'(0) = 0,
)-

so that (L — My)""Y(v) € Er(i). Since Er(A) N Er(p) = {0} by Proposition [6.7)(2), it follows
that
(L — \y)"'(v) = 0.

Since n is the smallest positive integer for which (L — AIy)"(v) = 0 holds, we must conclude
that n — 1 =0, and so

= (L= Ay)"'(v) = (L — A)°(v) = v.

Therefore the null space of L — ply restricted to Kp(A) is {0}, and so L — ply : Kp(A\) — V' is
injective.

Proof of Part (3). Suppose that v € K, (A)N K (i), so in particular (L — puly)™(v) = 0 for some
n € N. Since K () is L-invariant by Part (1), it readily follows that K (\) is invariant under
L — uly, and thus L — uly is an injective operator on K () by Part (2). An easy induction
argument shows that (L — uly)™ is likewise an injective operator on K (), and since v € K,())
is such that (L — uly)"(v) = 0, it follows that v = 0 and therefore K;(\) N K. (u) =2. N

Proposition 9.5. Let V' be a finite-dimensional vector space over F and L € L(V'). Suppose
that Pp, splits over F and A € o(L) has algebraic multiplicity m. Then

1. dim(KL (X)) < m.

2. Kp(A) = Nul((L — My)™).

Proof.
Proof of Part (1). Letting dim(V') = n, and recalling Corollary and Definition [6.30} there
exist ai,...,a,_, € F such that

P(t) = (—1 mH t—ag),

where aj, # A for all k. Let Lx = Lk, (r). By Proposition[9.4(1), Lx € L(K1()\)) and X is an
eigenvalue of Li. From the latter fact it follows by Theorem that Pr,.(\) = 0, so that
t — X is a factor of Pp, ().

Suppose that Pp,(t) has a factor ¢ — p for some u # A, so that P, (1) = 0. Then p is
an eigenvalue of Lx by Theorem again, so there exists some v # 0 in K (\) such that
Li(v) = pv, whence (Lx — pl)(v) = 0. But Lg — pul : Kp(\) — Kp()\) is injective by



287

Proposition [9.4)(2), so that Nul(Lx — pI) = {0} and hence v = 0, which is a contradiction.
Thus there exists no u # A such that ¢t — p is a factor of Pp,(t), and so
Pr(t) = (=1)"(t =) (9.2)

for some 1 < r < n. However, Pp, (t) divides Py (t) by Proposition [4.55, and since Pp(t) has
precisely m factors of the form ¢t — A\, we conclude that » < m. Observing that deg(Pr, ) =,

we finally obtain
dim(Kp(\)) = deg(Pr,.) <m

by Corollary [6.28].

Proof of Part (2). Since K (\) is a finite-dimensional vector space and Lx € L(K()\)), by the
Cayley-Hamilton Theorem and ({9.2)) we have

Pri(L) = (=1)"(Lx = Mk)" = Ok,

where I and Ok represent the identity and zero operators on K (A), and 1 <7 < m. Thus
(Lx — Mg)" = Ok, and so for any v € K (A),

(Lx — Mg)"(v) =0, (9.3)
and then
(Lx — Mg)™(v) = (Lg — Mg)™ " ((Lx — Mg)"(v)) = (Lg — Mg)™"(0) =0

shows that
v € Nul((Lg — Mg)™) € Nul((L — Ay)™).

(Observe that if » = m, then (9.3)) delivers the desired outcome right away.) On the other hand
if v.e Nul((L — AIy)™), then it is immediate that v € K (\).
Therefore K (A\) = Nul((L — AIy)™). |

9.2 — JORDAN FORM
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THE GEOMETRY OF VECTOR SPACES

10.1 — CONVEX SETS

Recall that, if V' is a vector space over R and u,v € V, then the line segment joining u and
v is the set

Lo ={(1-tu+tv:0<t <1}

A set C' C V that always contains the line segment joining two of its elements is of special
interest.

Definition 10.1. Let V' be a vector space over R. A set C' CV is convex if Ly, C C for every
u,vecC.

Notice that any vector space V is convex: if u and v are in V, then any linear combination
ciu+ cov is also in V', which certainly includes any linear combination of the form (1 —t)u+ tv,
0 <t <1, and therefore Ly, C V.

Theorem 10.2. Let V' be a vector space over R. For any vy,...,v, €V the set

i=1

i=1

18 convex.

Proof. Let vi,...,v, € V. Fix u,w € S, so that
u=wuyvy+---+u,v, and w=w;vy+---+w,vy,

for some u;, w; € R such that u;, w; > 0 for all 1 <i <n, and

n n
E U; = E w; = 1.
i=1 i=1

Let x € Lyw be arbitrary, so x = (1 — s)u + sw for some s € [0,1]. It must be shown that
x € S. Now,

x=(1—=8)(uvy+ -+ upvyp) + s(wrvy + -+ + w,vy)
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=[(1 = s)ug + swy|vy + -+ [(1 — $)up, + swy,| vy,

where for each ¢ we clearly have (1 — s)u; + sw; > 0, and
Z[(l — s)u; + sw;| = (1 —S)Zui—i—sZwi =1-s)()+s)(1)=1—-s5)+s=1.
i=1 i=1 i=1

Thus if we let x; = (1 — s)u; + sw; for each 1 <1i < n, then
X=x1V]y+ -+ TpVy

with x; > 0 for all ¢ and z; + --- 4+ 2, = 1. Hence x € S, and since x € L, is arbitrary it
follows that Ly, C S. Since u,w € S are arbitrary we conclude that Ly, C S for all u,w € 9,
and therefore S is convex. |

Proposition 10.3. Let V' be a vector space over R and C' CV a convex set. If vy,...,v, € C
and ty, ... .t, >0 with > t; =1, then > .  t;v; € C.

The proof of this proposition will be done by induction.

Proof. In the case when n = 1, the statement of the proposition reads as: “If v; € C' and
t; > 0 with ¢; = 1, then t;v; € C”. This is obviously true, and so the base case of the inductive
argument is established.

Now assume the statement of the proposition is true for some arbitrary integer n > 1.
Suppose that vi,..., v, € Cand ty,...,t,41 > 0 with ¢; +--- +¢,41 = 1. It must be shown
that tyvi + -+ +t11Vey1 € C.

If t,,1 = 1 then we must have ¢; = 0 for all 1 <1 < n, whence

n+1

Z tivi=vpp €C

i=1
and we're done.
Assuming that ¢, # 1, observe that from Z?;l t; = 1 we have

n

Zti =1—tu1,

i=1
and so
> —— =1 (10.2)
i=1 I tn-i—l
obtains since 1 — t,,+1 # 0. Now,
n+1 n n +
liv; = Livi + tar1Vnpr = (1 =ty —Zvi + tnt1 Va1,
; ; +1Vnt1 = ( +1) ; 1=t +1Vn+1

where by the inductive hypothesis
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FIGURE 11. The convex hull of some points in R2.

is an element of C' because of and the observation that
t;
1 - tn+1
for all 1 <1i <n. Thus, since u,v, 1 € C,
n+1

Z tivi=(1—top)u+t, Vo
i—1

>0

for some 0 <t,,; <1, and C is convex, we conclude that Z?:ll tiv, € C.
Therefore the statement of the proposition is true for n + 1, and the proof is done. |

We say that C” is the smallest convex set containing v, ..., v, if, for any convex set C
such that vq,...,v, € C, we have C' C C.

Corollary 10.4. Let V' be a vector space and vy,...,v, € V. Then the set S given by ((10.1))
is the smallest convex set that contains vy, ..., Vv,.

Proof. Let C' be a convex set containing vy,...,v,. For any x € S we have

n
X = E tz‘VZ'
=1

FIGURE 12. Stereoscopic image of the convex hull of some points in R3.
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Vo

F1GURE 13. The parallelogram spanned by vy, vs.

for some t;,...,t, > 0 such that Y " ¢, = 1. But by Proposition it then follows that
x € C. Therefore S C C. [ |

The convex hull of a set A, denoted here by Conv(A), is defined to be the smallest convex
set that contains A. It is easy to show that Conv(A) is equal to the intersection of all convex
sets C' that contain A:

Conv(A) = ﬂ {C: AC C and C is convex}
Thus Corollary states that

Conv({vy,...,v,}) = {Z tivi
i=1
See Figures [I1] and

Suppose that vi and vy are two linearly independent vectors in a vector space V. Then the
parallelogram spanned by v; and v; is the set of vectors (or points, if preferred)

h,.wth()mﬂ,E:tle}.

i=1

{t1V1 + t2V2 :0 S tl,tg S 1}

Note that 0 belongs to this set, as well as vy, vo, vi+vs. To see how the set forms a parallelogram
in the geometric sense, we return to the practice introduced in Chapter 1 of representing vectors
by arrows, which can still be done even if V' is not a Euclidean space (i.e. a vector space
consisting of Euclidean vectors). See Figure

Definition 10.5. Let {vy,...,v,} be a linearly independent set of vectors in V. The n-
dimensional box spanned by vy,...,v, is the set

i=1

OSQV”jngl}.

Vi Vi
Vo Vo

V3 V3

F1GURE 14. The parallelepiped spanned by vy, va, vs.



292

In particular By is the line segment spanned by v, By the parallelogram spanned by v,
and vy and Bs the parallelepiped spanned by v, vo, and vs.

For a depiction of a parallelepiped (or box) spanned by vy, vo, and vs, see Figure It can
be shown that the box B, is a convex set for any n € N.
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SYMBOL (GLOSSARY

A
ij

Az’*

The matrix A.

The transpose of A = [a;;]: the ij-entry of AT is aj;.

The conjugate of A = [ay]: the ij-entry of A is ;.

The adjoint of A: A* = (A)T.

The determinant of the matrix A.

The submatrix of A obtained by deleting the ith row and jth column of A.
The submatrix of A obtained by deleting the ith row of A.

The submatrix of A obtained by deleting the jth column of A.

Same as A;;. Used for such expressions as (A");; for clarity.

The ij-entry of matrix A.

An m x n matrix with ij-entry a;;.

An n X n square matrix with ¢j-entry a;;.

A matrix with dimensions either unspecified or understood from context.
The set of complex numbers.

The Kronecker delta: d;; = 0if i # j, 6;; = 1 if i = j.

The jth standard basis element of R™ or C": e; = [0;;]nx1-

The eigenspace corresponding to the eigenvalue A of matrix A.

The eigenspace corresponding to the eigenvalue A of operator L.
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]men

¥B
YA (M)
v2(A)

Img(L)

Is

Oy

F(S,F)
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An unspecified field, the elements of which are called scalars.

F*" in Chapter 1, otherwise F"*!,

Set of all m x n matrices with entries in .

The coordinate map, where ¢g(v) = [v]z.

The geometric multiplicity of eigenvalue A of matrix A.

The geometric multiplicity of eigenvalue A of operator L.

Image of linear mapping L : V — W. Img(L) = {L(v) : v e V}.

The change of basis matrix from basis B to basis B'.

The n x n identity matrix.

An identity matrix, dimensions unspecified or understood from context.
The identity operator on vector space V: Iy (v) = v for all v e V.
Matrix corresponding to linear mapping L with respect to any basis.
Matrix corresponding to linear operator L with respect to the basis B.
Matrix corresponding to linear mapping L with respect to bases B and C.
Image of V under L:V — W. L(V) = Img(L).

Set of all linear operators L : V' — V on some vector space V.

Set of all linear mappings L : V' — W on given vector spaces V and W.
The algebraic multiplicity of eigenvalue A of matrix A.

The algebraic multiplicity of eigenvalue A of operator L.

Null space of linear mapping L : V — W. Nul(L) = {v e V : L(v) = 0}.
The set of natural numbers (i.e. positive integers): N = {1,2,3,...}.
The zero mapping in L(V,W): O(v) =0 for all ve V.

The zero operator on vector space V: Oy(v) =0 for all ve V.

The zero vector.

The set of all functions S — F.

The zero vector of vector space V.
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The m X n zero matrix (all entries are 0).

The n x n zero matrix (all entries are 0).

A zero matrix, dimensions unspecified or understood from context.
An orthonormal basis for an inner product space.

The vector space of all polynomials of degree at most n with coefficients in F.
The set of rational numbers.

The set of real numbers.

The number of elements in the set S (i.e. the cardinality of .S)

Set of all n X n symmetric matrices with entries in F.

Set of all n x n skew-symmetric matrices with entries in IF.

The similar matrix relation.

Set of all eigenvalues in F of a matrix A € F"*".

Set of all eigenvalues in F of an operator L € L(V).

The vector v.

The norm or magnitude of v; that is, ||[v]| = /v - v or ||v]| = \/(v,V)
The normalization of vector v; that is, v = v/||v||

The B-coordinates of vector v.

The set of whole numbers: W = {0, 1,2,3,...}.

The set of integers: Z = {1,—-1,2,-2,3,-3,...}.

The inner product function.

The inner product function of vector space V.

Symbol for logical implication. Read as “implies” or “implies that.”

Symbol for logical equivalence. Read as “is equivalent to” or “if and only if.”
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