ANSWERS TO LINEAR ALGEBRA PROBLEMS

1.6.1a It can help to get the parametric equation for L. Letting z = 1 gives x = 5 and

z—1 1-1
- 4=~ 1 4—4
y 5 + 5 + ;
so p1 = (5,4,1) is one point on Ly. Letting z = 3 gives x = 5 and
z—1 3—1
- 4="""14=5
y 5 + 5 + ;

so pa = (5,5,3) is another point on Ls. Letting

(S

V=py—p1=|5|—

w
o O
I
)

then Ly is given by

while L, is given by

1 2
p(s)=|1|+s| 1|, seR
1 -1
We must find s,t € R such that p(s) = q(t):
1 2 5 0
1|+s| 1|=4]|+1t|1
1 -1 1 2
This gives rise to the system of equations
25s4+1= 5
s+1= t+14
—s+1=2t+1

which has the unique solution (s,t) = (2,—1). That is,

1 2 5
q(-1)=p@2)=|1|+2| 1|=| 3|,
1 —1 —1

so (5,3, —1) is the point of intersection.

1.6.1b The plane certainly contains all points that L; and L, contain, such as

5 1 d
a=| 3|, b=|1]|, c=|4
—1 1 1



Letting

u=b—-a=

—4 0
-2 and v=c—a=|1],
2 2

a parametric equation for the plane is p(s,t) = a + su + tv, (s,t) € R? That is,

T 5 —4 0
yl=1| 3|+s|—-2|+t|1 (1)
z -1 2 2

To find the algebraic equation, we obtain from the system

r= 5H—4s
y= 3—2s+ t
z=—1+2s+2t

From the system’s first and second equations we have

5 — 5—
s = T and t=y—3+2s=y—3+ x,
4 4
Substituting these into the third equation then yields
b—uw S—w 1 3
=—14+2s+2t=—-142( —— 2(y — =—+2y— =
z +2s + + ( 1 )—l— (y 3+ 1 ) 5 + 2y 5%

or
3r —4y+ 2z =1,

which is the algebraic equation of the plane.

1.6.2a Geometrically, the plane P may be characterized as the set of all points p = (z,y, z) €
R? such that the vector ap is orthogonal to n, which is to say ap - n = 0. Now,

=95 1
O=ap-n=|y—1 —4|l=(x—-5)—4y—1)+2(z—3),
z—3 2

and thus x — 4y 4+ 2z = 7 is the algebraic equation of P.

1.6.2b From the algebraic equation we have x = 7 — 4y + 2z, and so P may be characterized
as the set of vectors of the form

x T—4y+ 2z 7 4 —2
z z 0 0 1
that is, P is given as the parametric equation
7 4 —2]
p(s,t)=|0|+s|1|+t| Of, s,teR.
0 0 1



2.2.1a We have

3
x'x=[3 -1 2]|-1|=[14],
2
which in practice is identified with the scalar 14.
2.2.1b We have
3 9 -3 6
xx'=|-1[[3 -1 2]=|-3 1 -2
2 6 —2 4
2.2.1c We have
-2 -9
AC=|-12 3
9 7

2.5.1 The corresponding augmented matrix for the system is

[1 2 -1 9
2 0 —1| -2
35 2| 22
We transform this matrix into row-echelon form:
1 2 —1] 9 (1 2 -1 9 1 2 -1 9
2 0 —1| —2| 22 g 40 1| —20| 228,10 -1 5| -5
35 2|2 TS ol -1 5| —5 0 —4 1]-20

1 2 -1 9
0 -1 2| =5
0 0 -19 0

We have obtained the equivalent system of equations
{x +2y— z= 9

—4ro+rz—rs

— y+ Sz=-5
—19z= 0

From the third equation we have z = 0, which when put into the second equation yields
—y = =5, or y = 5. Finally, from the first equation we obtain.

r+205)—-0=9 = x=-1

Therefore the sole solution to the system is [—1,5,0] .

2.5.2 The corresponding augmented matrix for the system is
1 0 -1 1
-2 3 -1 0
-6 6 0] -2



We transform this matrix into row-echelon form:

10 -1 1 10 —1]1 10
9 3 —1| o 2ot g 3 g | 9| 22Tl 3 3|2
66 0|2 T 0 6 —6 |4 00

We have obtained the equivalent system of equations
r— z=1
3y —3z=2,

giving = z+ 1 and y = z 4+ 2. Any ordered triple (z,y,z) that satisfies the original system
must be of the form

(z+1,32+2,2)
for some z € R, and therefore the solution set is
{(z+1,32+2,2): z € R},

In terms of column vectors, we have

z+1 1 z 1 1
z—l—% = % +1z|= % +z|1f,
z 0 z 0 1

and so solution set is
3 1

Lioal+t|1| :teRy,
0 1

which is a line in R3.

253 {[-Tw-I+w3+dww] weR}

2.5.4 We employ the same sequence of elementary row operations on both A and I3, as
follows.

3 -6 -1 1|7 -1 2 2 3|1
1 2 2 31| ===l 3 6 -1 1|7 | 2o,
4 -8 —3 —216 4 —8 —3 —92|¢ | ‘ntreors

3
1 2 2 122 3|1
005 10|10 | =201 00 1 212
00 5 10/ 10 r/5=r 000 O0]0

We now have the equivalent system of equations

—r+2y+224+3w=1
z4+2w=2



giving z =2 — 2w and x = 2y — w + 3 for y,w € R. Letting s = y and ¢t = w, solution set is

2s —t+3 3 2 -1
s 0 1 0
9 _ ot s, teR ) = 9 + s 0 +1 _9 s,teR 3,
t 0 0 1
which is a plane in R*.
2.5.5a Put augmented matrix for system in row-echelon form:
2 1 1]3] [t -2 x|4] [1 -2 A4 1 -2 A4
1 -1 2(3|~|1 -1 2(3[~|0 1 2=XA|—-1|~]|0 1 2—-X]|-1
1 =2 A |4 2 1 1]3 0 5 1—-2X\|-5 0 0 3Xx=9| 0
[1 0 4-X] 2] [10 1] 2
~10 1 2—=X|—-1|~|0 1 —-1]-1
100 3=A] 0] 00 3=-X| 0

From this it can be seen that there is no value for A that results in a system having no solution.

2.5.5b If A\ # 3 there will be a unique solution. The third equation in the system obtained
above is (3 — A)z = 0, which gives z = 0 when A # 3. The second equation y — z = —1 then
yields y = —1, and the first equation x 4+ z = 2 yields x = 2. Thus

is the unique solution for any \ # 3.

2.5.5c If A = 3 there will be infinitely many solutions. The third equation in the system
above becomes 0z = 0 when A = 3, and hence z can be any real number. The second equation
gives y = z — 1, and the first equation gives x = 2 — 2. Solution set to the system is therefore

2—z 2 —1
z—1|:2z€eR 3 = -1+t 1{:teR
z 0 1

2.5.6 Letting b = [by, bo, b3, by] ", we have

1 0 =11 1 0 —1] b 1 0 =110

_2 3 _1 b2 2r1+ro—ry 0 3 _3 b2 + 2b1 ro+r3—"r3 O 3 _3 bQ + 2b1
3 =3 0 bg :gnifg—ws 0 -3 3 b3 - 3b1 0 0 0 b3 -+ bg - b1
2 0 =2 | by pra 0 0 0by—2b 00 0by—2b
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so we must have by — 2b; = 0 and bs + by — b; = 0, which implies by = 2b; and b3 = by — by. We
have

3.2.2a Let W denote the set. Certainly W contains O, the 2 x 2 matrix with all entries 0,
and hence W # @. Suppose that A, B € W, so that AT = A and BT = B. Since

(A+B)'=AT+B" = A +B,
we have A + B € W. Also, for any ¢ € R,
(cA)T =cAT = cA,
and so cA € W. Since W is a nonempty set that is closed under vector addition and scalar

multiplication, we conclude that it is a subspace of R?*2.

3.2.2d Let W denote the set. Observe that

1 0
A_[O O]EW,

since we need only choose the real numbers a = 1 and b = 0 to obtain

DR

On the other hand

—4 0
—4A = { 0 0} ¢ W,
since there is no real number a for which a?> = —4! Therefore W is not a subspace of R?*2,

since it is not closed under scalar multiplication.

3.4.1 The set S = {u;,us} does not span R? since, for instance, [1 0]" is not in Span(S).
From

auy + buy = {(1)]

comes the system
—a+2b=1
3a—6b=0

which is readily found to have no solution (multiply the first equation by —3 to see that the
system is inconsistent).

3.5.1a Suppose a, b, c € R are such that au; 4+ bus + uz = 0. This gives the system



2a+3b—2c=0
b+ 3c=0
—a +2c=0

Solving the system gives a = b = ¢ = 0, and therefore {uy, us, uz} is a linearly independent set
of vectors.

3.5.1b Find a,b,c € R such that au; + buy + uz = v. This gives the system

2a +3b—2c= —6
b+ 3c=-10
—a +2c= -5

Solving the system gives (a,b,c) = (1, —4, —2), so

1
[V]B: —41.
-2

3.5.2 The yz-plane, P,., is the set of points in R?® that satisfy the equation = 0. That is,

0 0 0 0 0
P, = yl:y,ze€R P =<s|1|+t|0|:s5,t€Rp=Span< |1]|, |0
z 0 1 0 1
From this we see that the set
0 0
Ly, 0],
0 1

readily shown to be linearly independent, is a basis for P,,.

3.5.3 We have x = 3z — 2y, so the plane P consists of points (z,y, z) such that

x 3z — 2y —2 3
y|= Y =y| 1|+=2(0],
Z z 0 1
where y, z € R. That is,
—2 3
P = Span 11,10
0 1
The vectors
—2 3
vy = 1 and vy = {0
0 1

are readily verified to be linearly independent, and therefore {vy, vy} is a basis for P.
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3.8.1 Suppose A is m x n, and so has column vectors ay,...,a,. As a consequence we find
that AT has row vectors a],...,a,, and so since (a] )" = ay, for all 1 < k < n by Proposition

2.3(3), by definition we have
Col(A) = Span{ay,...,a,} = Span{(a/)",...,(a))"} = Row(A").
The proof that Row(A) = Col(AT) is similar.

3.8.2 Since Col(A) = Row(A ") by Problem 3.8.1, we have
rank(A) = dim(Col(A)) = dim(Row(A ")) = rank(A").

3.8.3a Letting by, ..., b, be the column vectors of B, we have

AB = A[bl bp}:[Abl Abp]
by Proposition [2.6, which makes clear that Col(AB) = Span{Ab,...,Ab,}. Now, letting
ai,...,a, be the column vectors of A, for each 1 < k < p we find by direct computation that
bk
Abk :[al an} :blkal+"'+bnkana
bnk

and so Aby € Span{ay,...,a,}. Thus
Col(AB) = Span{Ab;,...,Ab,} C Span{a,,...,a,} = Col(A)

by the closure properties of the vector space Span{ai,...,a,} (see Proposition [3.30]), which
shows that Col(AB) is a subspace of Col(A), and therefore

rank(AB) = dim(Col(AB)) < dim(Col(A)) = rank(A)
by Theorem [3.56{2).

3.8.3b We use Problems 3.8.2 and 3.8.3a to do this:
rank(AB) = rank((AB)") = rank(B" A7) < rank(B") = rank(B).

4.2.1 Suppose that x is a solution to the system Ax = b, so that Axq = b. Let S represent
the solution set of the system. We must prove that S = xo + Nul(L).
Let z € xg + Nul(L). Then z = x, + y for some y € Nul(L), and so

Az=A(xo+y)=Axo+Ay=b+ L(y)=b+0=h.

This shows that z satisfies the system. That is, z € S and we conclude that xo + Nul(L) C S.
Next, let z € S, which implies that Az = b. Observing that z = x¢ + (z — X¢), where

L(z —x9) =A(z—%9) =Az— Axg=b—-b =0

shows z — xo € Nul(L), we see z € x¢ + Nul(L) and conclude that S C xq + Nul(L).
Therefore S = xo + Nul(L).



4.3.1 We have B = (vy,Vvsy), and C = (w1, Wy, w3). Now,

or=2((i)- |z |

We need the C-coordinates of L(v;), which means finding aq, as, ag such that

1 -1 0
a1wi + aswe +asws =ay | O|+as| 2|+4as|l| = L(vy);
-1 2 2
that is,
a1 — as = 1
{ 2@2 —f- as = —2
—ai + 2CL2 + 2@3 =-5
which solves to give a; = 1, as = 0, and a3 = —2. Thus
1
[L(vi)le=| 0
-2
Next,

wor-u(§)-[ ]

We need the C-coordinates of L(vs), so we find ay, as, ag such that

1 -1 0
A1W1 + aoWo + a3wWs3 = Q1 0 + a9y 2 + as 1| = L(Vg).
—1 2 2

Like before, this yields a system of equations. We put its augmented matrix into row-echelon
form:

1 -1 0] 2 1 -1 0] 2 1 -1 0] 2 1 -1 0| 2
0 2 1| 1|~]0 21 I{~]0 1 2|-1f({~|[0 1 2|-1
-1 2 2|-3 0o 1 2 -1 0o 21 1 0O 0 -3| 3
which solves to give a; = 3, a; = 1, and a3 = —1. Thus

3

[L(va)le=| 1

-1

The BC-matrix of L is therefore
1 3
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4.4.1a Letting e; = [1,0]" and e, = [0,1]", by Theorem we have

Les =[lels [eas],

and so we must find the B-coordinates of e; and e,. Letting by = [1,2]" and by = [-2,1]T, so
that B = (by, bs), we must find 1, x9,y1,y2 € R so 21b; + x2by = €; and y1b; + yo2by = ey;
that i
s, $1—2$2:1 y1—2y220
201 + 19 =0 and 201 + Yo =1

Solving these systems gives (1, 22) = (3, —2) and (y1,42) = (2, 3). Thus [ei]s = [3,—2]" and

575 5' 5
les]s = [2,1]7, and we obtain
Ien = [

(S I
[SHESRGIIN]
| |

4.4.1b We have

L2l o1 [-8
s = Lenile = 3 51| 2)=|
5 5 5
5.3.1 Letting
1 1 2 1
A=[2 0 4| and b=|2],
0 3 1 3

the system of equations becomes the matrix equation Ax = b. We evaluate det(A) by expand-
ing along the first column:

0 4 1 2
det(A) = | 5 | ‘ —2' - ‘ = 12— 2(—5) = -2,
Now, letting A = [a; ay aj], we have
1 1 2 1 1 2
det(b ay ag)=1{2 0 4|=10, det(a; bazg)=|2 2 4|=0,
3 3 1 0 3 1

and

det(a; ag b) =

o N =
w o =
W N =

I

I

(=)

By Cramer’s Rule we have

_det(b ay a3z) s _ det(a; b az) 0. 2= det(a; ag b) 3
T det(A) 0 YT T de(A) T YT T det(a)

and so
x -5
yl= 0
z 3
is the solution to the system.
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6.2.1a (i) Characteristic equation: t* — 2t — 3 = 0. (ii) Eigenvalues: 3,—1. (iii) Basis for
eigenspace corresponding to

6.2.1b (i) Characteristic equation: ¢t — 12 = 0. (ii) Eigenvalues: v/12, —/12. (iii) Basis for
eigenspace corresponding to

e (el e ()

6.2.1c (i) Characteristic equation: > +3 = 0. (ii) Eigenvalues: no real eigenvalues. (iii)
Eigenspaces: none corresponding to real eigenvalues.

6.2.1d (i) Characteristic equation: > = 0. (ii) Eigenvalue: 0. (iii) Basis for eigenspace
corresponding to A = 0:

6.2.2a (i) Characteristic equation: t* — 6t* + 11t — 6 = 0. (ii) Eigenvalues: A = 1,2, 3. (iii)
Basis for eigenspace corresponding to

0 -1 -1
A=1: 1 ; A=2: 2 ; A=3: 1
0 2 1

6.2.2b (i) Characteristic equation: ¢* — 2t = 0. (ii) Eigenvalues: 0,+/2, —/2. (iii) Basis for
eigenspace corresponding to

5 15 + 52 15 — 52
A=0:Q[1]8;  A=vV2: ¢[—142V2|p; A=—V2:{|-1-2V2
3 7 7

6.2.2c (i) Characteristic equation: t3 — 2t — 15t + 36 = 0. (ii) Eigenvalues: —4,3. (iii) Basis
for eigenspace corresponding to

A= —4: 81 p; A=3: —2
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6.2.3a (i) Characteristic equation: (t —1)%*(t+2)(t+1) = 0. (ii) Eigenvalues: 1, —2, —1. (iii)
Basis for eigenspace corresponding to

6.2.3b (i) Characteristic equation: (¢ —4)%(t?+3) = 0. (ii) Real eigenvalue: 4. (iii) Basis for
eigenspace corresponding to A = 4:

SO N W

6.6.1a Characteristic polynomial is

3—t 2‘

Pa(t)=det(A —tT) =" " .7

=312 —4=(-5)(t—-1),

and so the eigenvalues of A are 1, 5.

6.6.1b For the eigenvalue 1 the associated eigenspace is the solution set for Ax = x, where

Ax=x = (A-Dx=0 = B g]ijzm

which yields x5 = —x7. Hence

Ea) ={i 1| v erf=som{ 1]}

For the eigenvalue 5 the associated eigenspace is the solution set for Ax = 5x, where

_ B -2 2][z] [0
Ax=5x = (A-5)x=0 = [ 5 —2}_9&2}_{0]’

which yields x5 = x1. Hence

6.6.1c Let

1 1
P:[_l 1] and D:{O 5_.

It is routine to verify that

R O T
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6.6.1d We have
_ 11 1]t o |t -1 1+4+5% —1+45%
50 1\50 _ 50p-1 _ 1 _
A” = (PDP )" =PD"P " = 2|:_1 J {0 550}{1 1} [_1+550 14+ 5%
Next, let
1 0
e=[s i

and note that (PCP~1)? = PC?*P~! = PDP~! = A. Hence

1{ 145 —1+\/5}

A2 —PCP ' ==
21-1+v5 1+56

6.6.2 The matrix A is diagonalizable, with

5 3 10
P—{Q 1] and D_{O 2}.

6.6.3 The matrix A is diagonalizable, with

-1 -1 1 4 0 0
P=| 1 -11 and D=1]0 0 0
0 1 2 0 0 12
6.6.4 Find the characteristic polynomial:
2—t 0 -2 3_¢ 0
Pa(t) =det(A—tI)=| 0 3—t 0 :(2—25)’ 0 B_t‘:(2—t)(3—t)2.

0 0 3-—t

The characteristic equation is (2 — ¢)(3 — ¢)? = 0, which has solution set {2,3}. Hence the
eigenvalues of A are 2 and 3.
The eigenspace corresponding to 2 is

Ea(2) ={x€R*: Ax = 2x} = {x: (A — 2)x = 0}.

Passing to the augmented matrix for the system (A — 2I)x = 0, we have

00 —-2/0
01 00].
00 110
Thus the solution set of the system is
z K 1
yl:y=z=0andxeR)=¢[0|:t€R ) =Span< |0
z 10 0

A basis for E4(2) is thus By = {[1,0,0]"}.
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The eigenspace corresponding to 3 is
Ea(3) ={xeR®: Ax = 3x} = {x: (A — 3I)x = 0}.

Passing to the augmented matrix for the system (A — 3I)x = 0, we have

-1 0 =20
00 0]0
00 0]0
Thus the solution set of the system is
x 0 -2 0 —2
yl:x=-—2zandy,zeRp=<s|1|+t| O|:s,t€R ) =8Spanq |1], 0
z 0 1 0 1

A basis for E4(3) is thus By = {[0,1,0]", [-2,0,1]" }.
A spectral basis for A (i.e. a basis for R? consisting of linearly independent eigenvectors of

A) is the ordered basis

17 o] [-2
B=B,UB,=[lo].|1],] o
ol |o 1

The eigenvalues corresponding to these eigenvalues are 2, 3, and 3, respectively. Therefore the
diagonal matrix we seek is

As for P, that is the 3 x 3 matrix with column vectors being the vectors in B in the order that
they appear:

7.3.1a {\/%[1,—3} L3,1]" }
7.3.1b {[1,0]7, [0,—1]"}
7.3.2a {L[1,1,1]T, L1-1,1,0]" L[LL—?]T}

7.3.2b {[1,0,0]T L 10,7, -2]T L[0,2,7]T}

7.3.3 {%[0 2,1,0]T,



1/2 0
0| |1
—1/21 = ol
o] |3

o = O

3

7.3.4a By Ye Olde Gram-Schmidt Process,
3 1 1/2
Wy = vy — 2 W = O1_2|0] 0
2w w2 2| -2
0 0 0
and
2 1
V3 W; V3 Wo 1 1 0
W3 = V3 — Wi — 9 = _ - — — 3
Wi Wy W9 - Wo 1 2 1
3 0 i
An orthogonal basis for W is therefore
1 1/2] [o 1 1] [
0 0 1 0 0
1 ]=1/2]|" |0 o 1 |=1]"
0 0 3 0 0] |

the latter basis obtained by replacing wy with 2w, to rid ourselves of fractions.

7.3.4b Find the norms of the vectors wy, wo, and w3 found above:

il = V2 wall = 5. will = VIO
An orthonormal basis for W is thus
1 1/2 0
{ Wi W3 W3 } _ 110 NG of 1 |1
[will” [[wel|” [|ws]| V2 (1) ’ —1/(2) V10 g

7.3.5b {[1,-1,-1,1,1]T, [3,0,3,-3,3]", [2,0,2,2,—2]" }.



