
Answers to Linear Algebra Problems

1.6.1a It can help to get the parametric equation for L2. Letting z = 1 gives x = 5 and

y =
z − 1

2
+ 4 =

1− 1

2
+ 4 = 4,

so p1 = (5, 4, 1) is one point on L2. Letting z = 3 gives x = 5 and

y =
z − 1

2
+ 4 =

3− 1

2
+ 4 = 5,

so p2 = (5, 5, 3) is another point on L2. Letting

v = p2 − p1 =

5
5
3

−
5

4
1

=

0
1
2

,
then L2 is given by

q(t) =

5
4
1

+ t

0
1
2

, t ∈ R,

while L1 is given by

p(s) =

1
1
1

+ s

 2
1
−1

, s ∈ R.

We must find s, t ∈ R such that p(s) = q(t):1
1
1

+ s

 2
1
−1

=

5
4
1

+ t

0
1
2

.
This gives rise to the system of equations 2s+ 1 = 5

s+ 1 = t+ 4
−s+ 1 = 2t+ 1

which has the unique solution (s, t) = (2,−1). That is,

q(−1) = p(2) =

1
1
1

+ 2

 2
1
−1

=

 5
3
−1

,
so (5, 3,−1) is the point of intersection.

1.6.1b The plane certainly contains all points that L1 and L2 contain, such as

a =

 5
3
−1

, b =

1
1
1

, c =

5
4
1

.
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Letting

u = b− a =

−4
−2

2

 and v = c− a =

0
1
2

,
a parametric equation for the plane is p(s, t) = a + su + tv, (s, t) ∈ R2. That is,xy

z

=

 5
3
−1

+ s

−4
−2

2

+ t

0
1
2

. (1)

To find the algebraic equation, we obtain from (1) the systemx= 5− 4s
y = 3− 2s+ t
z =−1 + 2s+ 2t

From the system’s first and second equations we have

s =
5− x

4
and t = y − 3 + 2s = y − 3 +

5− x
4

,

Substituting these into the third equation then yields

z = −1 + 2s+ 2t = −1 + 2

(
5− x

4

)
+ 2

(
y − 3 +

5− x
4

)
=

1

2
+ 2y − 3

2
x,

or

3x− 4y + 2z = 1,

which is the algebraic equation of the plane.

1.6.2a Geometrically, the plane P may be characterized as the set of all points p = (x, y, z) ∈
R3 such that the vector # „ap is orthogonal to n, which is to say # „ap · n = 0. Now,

0 = # „ap · n =

x− 5
y − 1
z − 3

·
 1
−4

2

= (x− 5)− 4(y − 1) + 2(z − 3),

and thus x− 4y + 2z = 7 is the algebraic equation of P .

1.6.2b From the algebraic equation we have x = 7− 4y+ 2z, and so P may be characterized
as the set of vectors of the formxy

z

=

7− 4y + 2z
y
z

=

7
0
0

+ y

4
1
0

+ z

−2
0
1

;

that is, P is given as the parametric equation

p(s, t) =

7
0
0

+ s

4
1
0

+ t

−2
0
1

, s, t ∈ R.
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2.2.1a We have

x>x =
[
3 −1 2

] 3
−1

2

= [14],

which in practice is identified with the scalar 14.

2.2.1b We have

xx> =

 3
−1

2

[3 −1 2
]
=

 9 −3 6
−3 1 −2

6 −2 4


2.2.1c We have

AC =

 −2 −9
−12 3

9 7


2.5.1 The corresponding augmented matrix for the system is1 2 −1 9

2 0 −1 −2
3 5 2 22

.
We transform this matrix into row-echelon form:1 2 −1 9

2 0 −1 −2
3 5 2 22

 −2r1+r2→r2−−−−−−−−→
−3r1+r3→r3

1 2 −1 9
0 −4 1 −20
0 −1 5 −5

 r2↔r3−−−−→

1 2 −1 9
0 −1 5 −5
0 −4 1 −20


−4r2+r3→r3−−−−−−−−→

1 2 −1 9
0 −1 5 −5
0 0 −19 0

.
We have obtained the equivalent system of equations{

x + 2y − z = 9
− y + 5z =−5

− 19z = 0

From the third equation we have z = 0, which when put into the second equation yields
−y = −5, or y = 5. Finally, from the first equation we obtain.

x+ 2(5)− 0 = 9 ⇒ x = −1.

Therefore the sole solution to the system is [−1, 5, 0]>.

2.5.2 The corresponding augmented matrix for the system is 1 0 −1 1
−2 3 −1 0
−6 6 0 −2

.
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We transform this matrix into row-echelon form: 1 0 −1 1
−2 3 −1 0
−6 6 0 −2

 2r1+r2→r2−−−−−−−→
6r1+r3→r3

1 0 −1 1
0 3 −3 2
0 6 −6 4

 −2r2+r3→r3−−−−−−−−→

1 0 −1 1
0 3 −3 2
0 0 0 0


We have obtained the equivalent system of equations{

x− z = 1
3y − 3z = 2,

giving x = z + 1 and y = z + 2
3
. Any ordered triple (x, y, z) that satisfies the original system

must be of the form

(z + 1, 3z + 2
3
, z)

for some z ∈ R, and therefore the solution set is{
(z + 1, 3z + 2

3
, z) : z ∈ R

}
.

In terms of column vectors, we havez + 1
z + 2

3
z

=

 1
2
3
0

+

zz
z

=

 1
2
3
0

+ z

1
1
1

,
and so solution set is 1

3

3
2
0

+ t

1
1
1

 : t ∈ R

 ,

which is a line in R3.

2.5.3
{[

7
4
− 7

4
w,−7

4
+ 3

4
w, 9

4
+ 3

4
w,w

]>
: w ∈ R

}
.

2.5.4 We employ the same sequence of elementary row operations on both A and I3, as
follows.  3 −6 −1 1 7

−1 2 2 3 1
4 −8 −3 −2 6

 r2↔r1−−−−→

−1 2 2 3 1
3 −6 −1 1 7
4 −8 −3 −2 6

 3r1+r2→r2−−−−−−−→
4r1+r3→r3−1 2 2 3 1

0 0 5 10 10
0 0 5 10 10

 −r2+r3→r3−−−−−−−→
r1/5→r1

−1 2 2 3 1
0 0 1 2 2
0 0 0 0 0

 .
We now have the equivalent system of equations{

−x+ 2y + 2z + 3w = 1
z + 2w = 2
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giving z = 2− 2w and x = 2y − w + 3 for y, w ∈ R. Letting s = y and t = w, solution set is


2s− t+ 3
s

2− 2t
t

 : s, t ∈ R

 =




3
0
2
0

+ s


2
1
0
0

+ t


−1

0
−2

1

 : s, t ∈ R

 ,

which is a plane in R4.

2.5.5a Put augmented matrix for system in row-echelon form:2 1 1 3
1 −1 2 3
1 −2 λ 4

∼
1 −2 λ 4

1 −1 2 3
2 1 1 3

∼
1 −2 λ 4

0 1 2− λ −1
0 5 1− 2λ −5

∼
1 −2 λ 4

0 1 2− λ −1
0 0 3λ− 9 0


∼

1 0 4− λ 2
0 1 2− λ −1
0 0 3− λ 0

∼
1 0 1 2

0 1 −1 −1
0 0 3− λ 0

.
From this it can be seen that there is no value for λ that results in a system having no solution.

2.5.5b If λ 6= 3 there will be a unique solution. The third equation in the system obtained
above is (3 − λ)z = 0, which gives z = 0 when λ 6= 3. The second equation y − z = −1 then
yields y = −1, and the first equation x+ z = 2 yields x = 2. Thus

x =

 2
−1

0


is the unique solution for any λ 6= 3.

2.5.5c If λ = 3 there will be infinitely many solutions. The third equation in the system
above becomes 0z = 0 when λ = 3, and hence z can be any real number. The second equation
gives y = z − 1, and the first equation gives x = 2− z. Solution set to the system is therefore

2− z
z − 1
z

 : z ∈ R

 =


 2
−1

0

+ t

−1
1
1

 : t ∈ R

 .

2.5.6 Letting b = [b1, b2, b3, b4]
>, we have

1 0 −1 b1
−2 3 −1 b2

3 −3 0 b3
2 0 −2 b4

 2r1+r2→r2−−−−−−−−−→
−3r1+r3→r3
−2r1+r4→r4


1 0 −1 b1
0 3 −3 b2 + 2b1
0 −3 3 b3 − 3b1
0 0 0 b4 − 2b1

 r2+r3→r3−−−−−−→


1 0 −1 b1
0 3 −3 b2 + 2b1
0 0 0 b3 + b2 − b1
0 0 0 b4 − 2b1

 ,
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so we must have b4− 2b1 = 0 and b3 + b2− b1 = 0, which implies b4 = 2b1 and b3 = b1− b2. We
have

b =


b1
b2

b1 − b2
2b1

.

3.2.2a Let W denote the set. Certainly W contains O2, the 2× 2 matrix with all entries 0,
and hence W 6= ∅. Suppose that A,B ∈ W , so that A> = A and B> = B. Since

(A + B)> = A> + B> = A + B,

we have A + B ∈ W . Also, for any c ∈ R,

(cA)> = cA> = cA,

and so cA ∈ W . Since W is a nonempty set that is closed under vector addition and scalar
multiplication, we conclude that it is a subspace of R2×2.

3.2.2d Let W denote the set. Observe that

A =

[
1 0
0 0

]
∈ W,

since we need only choose the real numbers a = 1 and b = 0 to obtain[
a2 0
0 b2

]
=

[
1 0
0 0

]
.

On the other hand

−4A =

[
−4 0

0 0

]
/∈ W,

since there is no real number a for which a2 = −4! Therefore W is not a subspace of R2×2,
since it is not closed under scalar multiplication.

3.4.1 The set S = {u1,u2} does not span R2 since, for instance, [1 0]> is not in Span(S).
From

au1 + bu2 =

[
1
0

]
comes the system {

−a + 2b= 1
3a− 6b= 0

which is readily found to have no solution (multiply the first equation by −3 to see that the
system is inconsistent).

3.5.1a Suppose a, b, c ∈ R are such that au1 + bu2 + u3 = 0. This gives the system



7 2a+ 3b− 2c= 0
b + 3c= 0

−a + 2c= 0

Solving the system gives a = b = c = 0, and therefore {u1,u2,u3} is a linearly independent set
of vectors.

3.5.1b Find a, b, c ∈ R such that au1 + bu2 + u3 = v. This gives the system 2a+ 3b− 2c= −6
b + 3c=−10

−a + 2c= −5

Solving the system gives (a, b, c) = (1,−4,−2), so

[v]B =

 1
−4
−2

.
3.5.2 The yz-plane, Pyz, is the set of points in R3 that satisfy the equation x = 0. That is,

Pyz =


0
y
z

 : y, z ∈ R

 =

s
0

1
0

+ t

0
0
1

 : s, t ∈ R

 = Span


0

1
0

 ,
0

0
1

 .

From this we see that the set 
0

1
0

 ,
0

0
1

 ,

readily shown to be linearly independent, is a basis for Pyz.

3.5.3 We have x = 3z − 2y, so the plane P consists of points (x, y, z) such thatxy
z

=

3z − 2y
y
z

= y

−2
1
0

+ z

3
0
1

,
where y, z ∈ R. That is,

P = Span


−2

1
0

 ,
3

0
1

 .

The vectors

v1 =

−2
1
0

 and v2 =

3
0
1


are readily verified to be linearly independent, and therefore {v1,v2} is a basis for P .



8

3.8.1 Suppose A is m × n, and so has column vectors a1, . . . , an. As a consequence we find
that A> has row vectors a>1 , . . . , a

>
n , and so since (a>k )> = ak for all 1 ≤ k ≤ n by Proposition

2.3(3), by definition we have

Col(A) = Span{a1, . . . , an} = Span{(a>1 )>, . . . , (a>n )>} = Row(A>).

The proof that Row(A) = Col(A>) is similar.

3.8.2 Since Col(A) = Row(A>) by Problem 3.8.1, we have

rank(A) = dim(Col(A)) = dim(Row(A>)) = rank(A>).

3.8.3a Letting b1, . . . ,bp be the column vectors of B, we have

AB = A
[
b1 · · · bp

]
=
[
Ab1 · · · Abp

]
by Proposition 2.6, which makes clear that Col(AB) = Span{Ab1, . . . ,Abp}. Now, letting
a1, . . . , an be the column vectors of A, for each 1 ≤ k ≤ p we find by direct computation that

Abk =
[
a1 · · · an

]b1k...
bnk

= b1ka1 + · · ·+ bnkan,

and so Abk ∈ Span{a1, . . . , an}. Thus

Col(AB) = Span{Ab1, . . . ,Abp} ⊆ Span{a1, . . . , an} = Col(A)

by the closure properties of the vector space Span{a1, . . . , an} (see Proposition 3.30), which
shows that Col(AB) is a subspace of Col(A), and therefore

rank(AB) = dim(Col(AB)) ≤ dim(Col(A)) = rank(A)

by Theorem 3.56(2).

3.8.3b We use Problems 3.8.2 and 3.8.3a to do this:

rank(AB) = rank((AB)>) = rank(B>A>) ≤ rank(B>) = rank(B).

4.2.1 Suppose that x0 is a solution to the system Ax = b, so that Ax0 = b. Let S represent
the solution set of the system. We must prove that S = x0 + Nul(L).

Let z ∈ x0 + Nul(L). Then z = x0 + y for some y ∈ Nul(L), and so

Az = A(x0 + y) = Ax0 + Ay = b + L(y) = b + 0 = b.

This shows that z satisfies the system. That is, z ∈ S and we conclude that x0 + Nul(L) ⊆ S.
Next, let z ∈ S, which implies that Az = b. Observing that z = x0 + (z− x0), where

L(z− x0) = A(z− x0) = Az−Ax0 = b− b = 0

shows z− x0 ∈ Nul(L), we see z ∈ x0 + Nul(L) and conclude that S ⊆ x0 + Nul(L).
Therefore S = x0 + Nul(L).
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4.3.1 We have B = (v1,v2), and C = (w1,w2,w3). Now,

L(v1) = L

([
3
1

])
=

 1
−5(3) + 13(1)
−7(3) + 16(1)

=

 1
−2
−5

.
We need the C-coordinates of L(v1), which means finding a1, a2, a3 such that

a1w1 + a2w2 + a3w3 = a1

 1
0
−1

+ a2

−1
2
2

+ a3

0
1
2

= L(v1);

that is, {
a1 − a2 = 1

2a2 + a3 =−2
−a1 + 2a2 + 2a3 =−5

which solves to give a1 = 1, a2 = 0, and a3 = −2. Thus

[L(v1)]C =

 1
0
−2

.
Next,

L(v2) = L

([
5
2

])
=

 2
1
−3

.
We need the C-coordinates of L(v2), so we find a1, a2, a3 such that

a1w1 + a2w2 + a3w3 = a1

 1
0
−1

+ a2

−1
2
2

+ a3

0
1
2

= L(v2).

Like before, this yields a system of equations. We put its augmented matrix into row-echelon
form:  1 −1 0 2

0 2 1 1
−1 2 2 −3

∼
1 −1 0 2

0 2 1 1
0 1 2 −1

∼
1 −1 0 2

0 1 2 −1
0 2 1 1

∼
1 −1 0 2

0 1 2 −1
0 0 −3 3


which solves to give a1 = 3, a2 = 1, and a3 = −1. Thus

[L(v2)]C =

 3
1
−1

.
The BC-matrix of L is therefore

[L]BC =
[[
L(v1)

]
C

[
L(v2)

]
C

]
=

 1 3
0 1
−2 −1

.
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4.4.1a Letting e1 = [1, 0]> and e2 = [0, 1]>, by Theorem 4.27 we have

IEB =
[
[e1]B [e2]B

]
,

and so we must find the B-coordinates of e1 and e2. Letting b1 = [1, 2]> and b2 = [−2, 1]>, so
that B = (b1,b2), we must find x1, x2, y1, y2 ∈ R so x1b1 + x2b2 = e1 and y1b1 + y2b2 = e2;
that is, {

x1 − 2x2 = 1
2x1 + x2 = 0 and

{
y1 − 2y2 = 0

2y1 + y2 = 1

Solving these systems gives (x1, x2) = (1
5
,−2

5
) and (y1, y2) = (2

5
, 1
5
). Thus [e1]B = [1

5
,−2

5
]> and

[e2]B = [2
5
, 1
5
]>, and we obtain

IEB =

[
1
5

2
5

−2
5

1
5

]
.

4.4.1b We have

[x]B = IEB[x]E =

[
1
5

2
5

−2
5

1
5

][
2
−5

]
=

[
−8

5

−9
5

]
.

5.3.1 Letting

A =

1 1 2
2 0 4
0 3 1

 and b =

1
2
3

,
the system of equations becomes the matrix equation Ax = b. We evaluate det(A) by expand-
ing along the first column:

det(A) =

∣∣∣∣ 0 4
3 1

∣∣∣∣− 2

∣∣∣∣ 1 2
3 1

∣∣∣∣ = −12− 2(−5) = −2.

Now, letting A = [a1 a2 a3], we have

det(b a2 a3) =

∣∣∣∣∣∣
1 1 2
2 0 4
3 3 1

∣∣∣∣∣∣ = 10, det(a1 b a3) =

∣∣∣∣∣∣
1 1 2
2 2 4
0 3 1

∣∣∣∣∣∣ = 0,

and

det(a1 a2 b) =

∣∣∣∣∣∣
1 1 1
2 0 2
0 3 3

∣∣∣∣∣∣ = −6.

By Cramer’s Rule we have

x =
det(b a2 a3)

det(A)
= −5, y =

det(a1 b a3)

det(A)
= 0, z =

det(a1 a2 b)

det(A)
= 3,

and so xy
z

=

−5
0
3


is the solution to the system.
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6.2.1a (i) Characteristic equation: t2 − 2t − 3 = 0. (ii) Eigenvalues: 3,−1. (iii) Basis for
eigenspace corresponding to

λ = 3 :

{[
1
2

]}
; λ = −1 :

{[
0
1

]}
.

6.2.1b (i) Characteristic equation: t2 − 12 = 0. (ii) Eigenvalues:
√

12,−
√

12. (iii) Basis for
eigenspace corresponding to

λ =
√

12 :

{[
3√
12

]}
; λ = −

√
12 :

{[
−3√

12

]}
.

6.2.1c (i) Characteristic equation: t2 + 3 = 0. (ii) Eigenvalues: no real eigenvalues. (iii)
Eigenspaces: none corresponding to real eigenvalues.

6.2.1d (i) Characteristic equation: t2 = 0. (ii) Eigenvalue: 0. (iii) Basis for eigenspace
corresponding to λ = 0: {[

1
0

]
,

[
0
1

]}
.

6.2.2a (i) Characteristic equation: t3 − 6t2 + 11t − 6 = 0. (ii) Eigenvalues: λ = 1, 2, 3. (iii)
Basis for eigenspace corresponding to

λ = 1 :


0

1
0

 ; λ = 2 :


−1

2
2

 ; λ = 3 :


−1

1
1

 .

6.2.2b (i) Characteristic equation: t3 − 2t = 0. (ii) Eigenvalues: 0,
√

2,−
√

2. (iii) Basis for
eigenspace corresponding to

λ = 0 :


5

1
3

 ; λ =
√

2 :


 15 + 5

√
2

−1 + 2
√

2
7

 ; λ = −
√

2 :


 15− 5

√
2

−1− 2
√

2
7

 .

6.2.2c (i) Characteristic equation: t3− 2t2− 15t+ 36 = 0. (ii) Eigenvalues: −4, 3. (iii) Basis
for eigenspace corresponding to

λ = −4 :


−6

8
3

 ; λ = 3 :


 5
−2

1

 .
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6.2.3a (i) Characteristic equation: (t− 1)2(t+ 2)(t+ 1) = 0. (ii) Eigenvalues: 1,−2,−1. (iii)
Basis for eigenspace corresponding to

λ = 1 :




0
0
0
1

,


2
3
1
0


 ; λ = −2 :



−1

0
1
0


 ; λ = −1 :



−2

1
1
0


 .

6.2.3b (i) Characteristic equation: (t− 4)2(t2 + 3) = 0. (ii) Real eigenvalue: 4. (iii) Basis for
eigenspace corresponding to λ = 4: 


3
2
0
0


 .

6.6.1a Characteristic polynomial is

PA(t) = det(A− tI) =

∣∣∣∣ 3− t 2
2 3− t

∣∣∣∣ = (3− t)2 − 4 = (t− 5)(t− 1),

and so the eigenvalues of A are 1, 5.

6.6.1b For the eigenvalue 1 the associated eigenspace is the solution set for Ax = x, where

Ax = x ⇒ (A− I)x = 0 ⇒
[

2 2
2 2

][
x1
x2

]
=

[
0
0

]
,

which yields x2 = −x1. Hence

EA(1) =

{
t

[
1
−1

]
: t ∈ R

}
= Span

{[
1
−1

]}
For the eigenvalue 5 the associated eigenspace is the solution set for Ax = 5x, where

Ax = 5x ⇒ (A− 5I)x = 0 ⇒
[
−2 2

2 −2

][
x1
x2

]
=

[
0
0

]
,

which yields x2 = x1. Hence

EA(5) =

{
t

[
1
1

]
: t ∈ R

}
= Span

{[
1
1

]}

6.6.1c Let

P =

[
1 1
−1 1

]
and D =

[
1 0
0 5

]
.

It is routine to verify that

PDP−1 =

[
1 1
−1 1

][
1 0
0 5

][
1/2 −1/2
1/2 1/2

]
=

1

2

[
1 1
−1 1

][
1 0
0 5

][
1 −1
1 1

]
= A.
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6.6.1d We have

A50 = (PDP−1)50 = PD50P−1 =
1

2

[
1 1
−1 1

][
1 0
0 550

][
1 −1
1 1

]
=

[
1 + 550 −1 + 550

−1 + 550 1 + 550

]
.

Next, let

C =

[
1 0

0
√

5

]
,

and note that (PCP−1)2 = PC2P−1 = PDP−1 = A. Hence

A1/2 = PCP−1 =
1

2

[
1 +
√

5 −1 +
√

5

−1 +
√

5 1 +
√

5

]
.

6.6.2 The matrix A is diagonalizable, with

P =

[
5 3
2 1

]
and D =

[
1 0
0 2

]
.

6.6.3 The matrix A is diagonalizable, with

P =

−1 −1 1
1 −1 1
0 1 2

 and D =

4 0 0
0 0 0
0 0 12

.
6.6.4 Find the characteristic polynomial:

PA(t) = det(A− tI) =

∣∣∣∣∣∣
2− t 0 −2

0 3− t 0
0 0 3− t

∣∣∣∣∣∣ = (2− t)
∣∣∣∣ 3− t 0

0 3− t

∣∣∣∣ = (2− t)(3− t)2.

The characteristic equation is (2 − t)(3 − t)2 = 0, which has solution set {2, 3}. Hence the
eigenvalues of A are 2 and 3.

The eigenspace corresponding to 2 is

EA(2) = {x ∈ R3 : Ax = 2x} = {x : (A− 2I)x = 0}.

Passing to the augmented matrix for the system (A− 2I)x = 0, we have0 0 −2 0
0 1 0 0
0 0 1 0

.
Thus the solution set of the system is

xy
z

 : y = z = 0 and x ∈ R

 =


 t0

0

 : t ∈ R

 = Span


1

0
0

.
A basis for EA(2) is thus B1 =

{
[1, 0, 0]>

}
.
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The eigenspace corresponding to 3 is

EA(3) = {x ∈ R3 : Ax = 3x} = {x : (A− 3I)x = 0}.

Passing to the augmented matrix for the system (A− 3I)x = 0, we have−1 0 −2 0
0 0 0 0
0 0 0 0

.
Thus the solution set of the system is

xy
z

 : x = −2z and y, z ∈ R

 =

s
0

1
0

+ t

−2
0
1

 : s, t ∈ R

 = Span


0

1
0

 ,
−2

0
1

.
A basis for EA(3) is thus B2 =

{
[0, 1, 0]>, [−2, 0, 1]>

}
.

A spectral basis for A (i.e. a basis for R3 consisting of linearly independent eigenvectors of
A) is the ordered basis

B = B1 ∪ B2 =

1
0
0

 ,
0

1
0

 ,
−2

0
1

.
The eigenvalues corresponding to these eigenvalues are 2, 3, and 3, respectively. Therefore the
diagonal matrix we seek is

D =

2 0 0
0 3 0
0 0 3

.
As for P, that is the 3× 3 matrix with column vectors being the vectors in B in the order that
they appear:

P =

1 0 −2
0 1 0
0 0 1

.

7.3.1a
{

1√
10

[1,−3]>, 1√
10

[3, 1]>
}

7.3.1b
{

[1, 0]>, [0,−1]>
}

7.3.2a
{

1√
3
[1, 1, 1]>, 1√

2
[−1, 1, 0]>, 1√

6
[1, 1,−2]>

}
7.3.2b

{
[1, 0, 0]>, 1√

53
[0, 7,−2]>, 1√

53
[0, 2, 7]>

}
7.3.3

{
1√
5
[0, 2, 1, 0]>, 1√

30
[5,−1, 2, 0]>, 1√

10
[1, 1,−2,−2]>, 1√

15
[1, 1,−2, 3]>

}
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7.3.4a By Ye Olde Gram-Schmidt Process,

w2 = v2 −
v2 ·w1

w1 ·w1

w1 =


3
0
2
0

− 5

2


1
0
1
0

=


1/2

0
−1/2

0

,
and

w3 = v3 −
v3 ·w1

w1 ·w1

w1 −
v3 ·w2

w2 ·w2

w2 =


2
1
−1

3

− 1

2


1
0
1
0

− 3


1/2

0
−1/2

0

=


0
1
0
3

.
An orthogonal basis for W is therefore


1
0
1
0

 ,


1/2
0

−1/2
0

 ,


0
1
0
3


 or




1
0
1
0

 ,


1
0
−1

0

 ,


0
1
0
3


 ,

the latter basis obtained by replacing w2 with 2w2 to rid ourselves of fractions.

7.3.4b Find the norms of the vectors w1, w2, and w3 found above:

‖w1‖ =
√

2, ‖w2‖ =
1√
2
, ‖w3‖ =

√
10.

An orthonormal basis for W is thus{
w1

‖w1‖
,

w2

‖w2‖
,

w3

‖w3‖

}
=


1√
2


1
0
1
0

 , √2


1/2

0
−1/2

0

 , 1√
10


0
1
0
3


.

7.3.5b
{

[1,−1,−1, 1, 1]>, [3, 0, 3,−3, 3]>, [2, 0, 2, 2,−2]>
}

.


