Math 250 Quiz \#5 (Fall 2020)

1 Use the Laplace transform method to solve the initial-value problem

$$
y^{\prime}+y=f(t), \quad y(0)=0
$$

where

$$
f(t)=\left\{\begin{aligned}
1, & 0 \leq t<1 \\
-1, & t \geq 1
\end{aligned}\right.
$$

First we determine that $f(t)=1-2 \mathfrak{u}(t-1)$, so

$$
y^{\prime}+y=1-2 \mathfrak{u}(t-1)
$$

and thus, taking the Laplace transform of each side (and letting $Y(s)=\mathcal{L}[y](s)$), we have

$$
\mathcal{L}\left[y^{\prime}+y\right]=\mathcal{L}[1-2 \mathfrak{u}(t-1)] \Rightarrow s Y-y(0)+Y=\frac{1}{s}-\frac{2 e^{-s}}{s} \Rightarrow Y=\frac{1}{s(s+1)}-\frac{2 e^{-s}}{s(s+1)}
$$

Now, since

$$
\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}
$$

we find that

$$
y(t)=\mathcal{L}^{-1}\left[\frac{1}{s(s+1)}\right]-2 \mathcal{L}^{-1}\left[\frac{e^{-s}}{s(s+1)}\right]=\left(1-e^{-t}\right)-2 \mathcal{L}^{-1}\left[e^{-s} \mathcal{L}[g(t+1)]\right]
$$

where

$$
\mathcal{L}[g(t+1)]=\frac{1}{s(s+1)}
$$

implies $g(t+1)=1-e^{-t}$. Using the property $\mathcal{L}[g(t) u(t-a)]=e^{-a s} \mathcal{L}[g(t+a)]$, we finally obtain

$$
y(t)=\left(1-e^{-t}\right)-2\left(1-e^{1-t}\right) \mathfrak{u}(t-1)
$$

