Math 250 Quiz \#4 (Fall 2020)

1 A $\frac{1}{4} \mathrm{~kg}$ mass is attached to a spring with stiffness $8 \mathrm{~N} / \mathrm{m}$. The damping constant is $\frac{1}{4}$ N -sec/m. If the mass is moved 1 m to the left of equilibrium and released, what is the equation of motion, and what is the maximum displacement to the right the mass will attain?

The initial value problem is

$$
\frac{1}{4} y^{\prime \prime}+\frac{1}{4} y^{\prime}+8 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=0 .
$$

The auxiliary equation can we written as $r^{2}+r+32$, which has solutions $r=-\frac{1}{2} \pm \frac{\sqrt{127}}{2} i$, and so the general solution to the differential equation is

$$
y(t)=e^{-t / 2}\left(c_{1} \cos \frac{\sqrt{127}}{2} t+c_{2} \sin \frac{\sqrt{127}}{2} t\right) .
$$

Using $y(0)=-1$ we get $c_{1}=-1$, and we then find that

$$
\begin{equation*}
y^{\prime}(t)=-\frac{1}{2} e^{-t / 2}\left(c_{2} \sin \frac{\sqrt{127}}{2} t-\cos \frac{\sqrt{127}}{2} t\right)+e^{-t / 2}\left(\frac{\sqrt{127}}{2} c_{2} \cos \frac{\sqrt{127}}{2} t+\frac{\sqrt{127}}{2} \sin \frac{\sqrt{127}}{2} t\right) . \tag{1}
\end{equation*}
$$

Using this and the initial condition $y^{\prime}(0)=0$, we find that $c_{2}=-\frac{1}{\sqrt{127}}$, and thus the equation of motion is

$$
\begin{equation*}
y(t)=-e^{-t / 2}\left(\cos \frac{\sqrt{127}}{2} t+\frac{1}{\sqrt{127}} \sin \frac{\sqrt{127}}{2} t\right) \tag{2}
\end{equation*}
$$

Maximum displacement to the right will occur at the first time $t>0$ for which $y^{\prime}(t)=0$. Using equation (1), $y^{\prime}(t)=0$ implies that

$$
\sin \left(\frac{\sqrt{127}}{2} t\right)=0
$$

which has as its smallest solution on $(0, \infty)$ the value $t=\frac{2 \pi}{\sqrt{127}}$. At this time the displacement is, using (2),

$$
y\left(\frac{2 \pi}{\sqrt{127}}\right)=e^{-\pi / \sqrt{127}} \approx 0.76 \mathrm{~m}
$$

2 Find the interval of convergence for

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{5^{2 n}} x^{2 n+1}
$$

Using the Ratio Test, we find that

$$
r=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2} x^{2 n+3}}{5^{2 n+2}} \cdot \frac{5^{2 n}}{(-1)^{n+1} x^{2 n+1}}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{25}=\frac{x^{2}}{25} .
$$

The test concludes the series converges for any x such that $x^{2} / 25<1$, or $x \in(-5,5)$. If $x^{2} / 25=1$ (i.e. $x= \pm 5$) the test is inconclusive.

If $x=-5$ the series becomes $\sum 5(-1)^{3 n+2}$, but since $\lim _{n \rightarrow \infty} 5(-1)^{3 n+2} \neq 0$ the Divergence Test concludes that the series diverges. If $x=5$ the series becomes $\sum 5(-1)^{n+1}$, which again diverges by the Divergence Test. Therefore $(-5,5)$ is the interval of convergence.

3 Write

$$
\sum_{n=2}^{\infty} n c_{n} x^{n-2}+6 \sum_{n=0}^{\infty} c_{n} x^{n+2}
$$

as a single series.
Reindex to get x^{n} in both series:

$$
\sum_{n=0}^{\infty} n c_{n+2} x^{n}+\sum_{n=2}^{\infty} 6 c_{n-2} x^{n}
$$

Throw the first two terms out of the first series and add to get

$$
2 c_{2}+3 c_{3} x+\sum_{n=2}^{\infty}\left[(n+2) c_{n+2}+6 c_{n-2}\right] x^{n} .
$$

