Math 250 Quiz \#2 (Fall 2020)

1 Solve the Bernoulli equation $\frac{d y}{d x}-y=e^{x} y^{2}$.
Let $v=y^{-1}$, so $y=1 / v$, and $v^{\prime}=-y^{-2} y^{\prime}$ implies $y^{\prime}=-v^{\prime} / v^{2}$. Putting these results into the equation yields the linear equation $v^{\prime}+v=-e^{x}$. Integrating factor is $\mu(x)=e^{x}$, and then

$$
v^{\prime}+v=-e^{x} \Rightarrow e^{x} v^{\prime}+e^{x} v=-e^{2 x} \Rightarrow\left(e^{x} v\right)^{\prime}=-e^{2 x} \Rightarrow e^{x} v=-\frac{1}{2} e^{2 x}+c
$$

From this we get

$$
v=-\frac{1}{2} e^{x}+c e^{-x}
$$

and finally

$$
y=\frac{1}{c e^{-x}-e^{x} / 2}=\frac{2}{c e^{-x}-e^{x}}
$$

2 Solve $\frac{d y}{d x}=\cos (x+y)$.
Let $u=x+y$, so $y^{\prime}=u^{\prime}-1$. The differential equation becomes $u^{\prime}=1+\cos u$, which is separable and gives

$$
\int \frac{1}{1+\cos u} d u=\int d x \Rightarrow \int \frac{1}{1+\cos u} \cdot \frac{1-\cos u}{1-\cos u} d u=x+c
$$

Thus we have

$$
x+c=\int \frac{1-\cos u}{\sin ^{2} u} d u=\int\left(\csc ^{2} u-\cot u \csc u\right) d u=-\cot u+\csc u
$$

and therefore

$$
\csc (x+y)-\cot (x+y)=x+c
$$

