Math 250 Quiz \#1 (Fall 2020)

1a Verify that $y=(1-\sin x)^{-1 / 2}$ is an explicit solution to $2 y^{\prime}=y^{3} \cos x$.
For y as given we have

$$
2 y^{\prime}=2\left[-\frac{1}{2}(1-\sin x)^{-3 / 2}(-\cos x)\right]=\frac{\cos x}{(1-\sin x)^{3 / 2}}
$$

while

$$
y^{3} \cos x=\left[(1-\sin x)^{-1 / 2}\right]^{3} \cos x=\frac{\cos x}{(1-\sin x)^{3 / 2}}
$$

The two sides of the differential equation thus match, verifying $y=(1-\sin x)^{-1 / 2}$ is a solution.

1b Give an interval I of definition for the solution given in part (a).
The solution $y=(1-\sin x)^{-1 / 2}$ has domain $\left\{x: x \neq \frac{\pi}{2}+2 \pi n\right\}$, where n is any integer. Two choices for I are $\left(\frac{\pi}{2}, \frac{5 \pi}{2}\right)$ and $\left(-\frac{3 \pi}{2}, \frac{\pi}{2}\right)$.

2 Determine the region in the $x y$-plane where the IVP $\left(y-x^{2}\right) y^{\prime}=y+\sqrt{x}, y\left(x_{0}\right)=y_{0}$, must have a unique solution.

Rewrite the differential equation as $y^{\prime}=f(x, y)$, with

$$
f(x, y)=\frac{y+\sqrt{x}}{y-x^{2}}
$$

The function f is continuous on its domain, which is $\left\{x: x \geq 0\right.$ and $\left.y \neq x^{2}\right\}$. The function

$$
\frac{\partial f}{\partial y}(x, y)=-\frac{x^{2}+\sqrt{x}}{\left(y-x^{2}\right)^{2}}
$$

is continuous on the same domain. By the Existence-Uniqueness Theorem we conclude that the IVP has a unique solution for

$$
\left(x_{0}, y_{0}\right) \in\left\{x: x>0 \text { and } y \neq x^{2}\right\}
$$

